
Web Programming Step by Step
Chapter 10

Ajax and XML for Accessing Data

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp and Jessica
Miller.

10.1: Ajax Concepts

10.1: Ajax Concepts

10.2: Using XMLHttpRequest
10.3: XML

Synchronous web communication (10.1)

synchronous: user must wait while new pages load
the typical communication pattern used in web pages (click, wait, refresh)

Web applications

web application: a web site that mimics the look, feel, and overall user experience of a desktop
application

a web app presents a continuous user experience rather than disjoint pages
as much as possible, "feels" like a normal program to the user

examples of web apps
Gmail, Google Maps, Google Docs and Spreadsheets, Flickr, A9

many web apps use Ajax to battle these problems of web pages:
slowness / lack of UI responsiveness
lack of user-friendliness
jarring nature of "click-wait-refresh" pattern

What is Ajax?

Ajax: Asynchronous JavaScript and XML

not a programming language; a particular way of using JavaScript
downloads data from a server in the background
allows dynamically updating a page without making the user wait
aids in the creation of rich, user-friendly web sites

examples: UW's CSE 14x Diff Tool, Practice-It; Google Suggest

Asynchronous web communication

asynchronous: user can keep interacting with page while data loads
communication pattern made possible by Ajax

Core Ajax concepts

JavaScript's XMLHttpRequest object can fetch files from a web server
supported in IE5+, Safari, Firefox, Opera (with minor compatibilities)

it can do this asynchronously (in the background, transparent to user)
contents of fetched file can be put into current web page using DOM
result: user's web page updates dynamically without a page reload

A typical Ajax request

user clicks, invoking event handler1.
that handler's JS code creates an XMLHttpRequest
object

2.

XMLHttpRequest object requests a document from
a web server

3.

server retrieves appropriate data, sends it back4.
XMLHttpRequest fires event to say that the data has
arrived

this is often called a callback
you can attach a handler to be notified when the
data has arrived

5.

your callback event handler processes the data and displays it6.

10.2: Using XMLHttpRequest

10.1: Ajax Concepts
10.2: Using XMLHttpRequest
10.3: XML

The XMLHttpRequest object

the core JavaScript object that makes Ajax possible

methods: abort, getAllResponseHeaders, getResponseHeader, open, send,
setRequestHeader
properties: onreadystatechange, readyState, responseText, responseXML,
status, statusText
IE6 doesn't follow standards and uses its own ActiveXObject instead
we'll learn to use Ajax in 4 steps:

synchronous, text-only (SJAT?)1.
asynchronous, text-only (AJAT?)2.
asynchronous w/ Prototype (AJAP?)3.
asynchronous w/ XML data (real Ajax)4.

1. Synchronous requests (10.2.1)

var ajax = new XMLHttpRequest();

ajax.open("GET", url, false);
ajax.send(null);

// at this point, the request will have returned with its data

do something with ajax.responseText;

create the request object, open a connection, send the request
when send returns, the fetched text will be stored in request's responseText property

Why synchronous requests are bad

your code waits for the request to completely finish
before proceeding
easier for you to program, but ...
the user's entire browser locks up until the download is
completed
a terrible user experience (especially if the file is very
large)

2. Asynchronous requests, basic idea (10.2.3)

var ajax = new XMLHttpRequest();

ajax.onreadystatechange = functionName;

ajax.open("get", url, true);
ajax.send(null);

// don't process ajax.responseText here, but in your function
...

attach an event handler to the request's onreadystatechange event
pass true as third parameter to open
handler will be called when request state changes, e.g. finishes
function's code will be run when request is complete

The readyState property

holds the status of the XMLHttpRequest
possible values for the readyState property:

State Description

0 not initialized

1 set up

2 sent

3 in progress

4 complete

readyState changes → onreadystatechange handler runs
usually we are only interested in readyState of 4 (complete)

Asynchronous XMLHttpRequest template

var ajax = new XMLHttpRequest();
ajax.onreadystatechange = function() {
 if (ajax.readyState == 4) { // 4 means request is finished

 do something with ajax.responseText;
 }
};

ajax.open("get", url, true);
ajax.send(null);

most Ajax code uses an anonymous function as the event handler
useful to declare it as an inner anonymous function, because then it can access surrounding local
variables (e.g. ajax)

Checking for request errors (10.2.2)

var ajax = new XMLHttpRequest();
ajax.onreadystatechange = function() {
 if (ajax.readyState == 4) {
 if (ajax.status == 200) { // 200 means request succeeded

 do something with ajax.responseText;
 } else {

 code to handle the error;
 }
 }
};

ajax.open("get", url, true);
ajax.send(null);

web servers return status codes for requests (200 means Success)
you may wish to display a message or take action on a failed request

Prototype's Ajax model (10.2.4)

new Ajax.Request(

 "url",
 {

 option : value,

 option : value,
 ...

 option : value
 }
);

Prototype's Ajax.Request object constructor accepts 2 parameters:
the URL to fetch, as a String,1.
a set of options, as an array of key:value pairs in {} braces2.

hides some of the icky details (onreadystatechange, etc.)
works in all browsers: IE, Firefox, etc.

Prototype Ajax methods and properties

options that can be passed to the Ajax.Request constructor:
method : how to fetch the request from the server (default "post")
parameters : query parameters to pass to the server, if any
asynchronous (default true), contentType, encoding, requestHeaders

events in the Ajax.Request object that you can handle:
onSuccess : request completed successfully
onFailure : request was unsuccessful
onCreate, onComplete, onException, on### (handler for HTTP error code ###)

Prototype Ajax template

 new Ajax.Request(

 "url",
 {
 method: "get",

 onSuccess: functionName
 }
);
 ...

function functionName(ajax) {

 do something with ajax.responseText;
}

most Ajax requests we'll do in this course are GET requests
attach a handler to the request's onSuccess event
the handler accepts the XMLHttpRequest object, ajax, as a parameter

Handling Ajax errors w/ Prototype

 new Ajax.Request(

 "url",
 {
 method: "get",

 onSuccess: functionName,
 onFailure: ajaxFailure
 }
);
 ...
function ajaxFailure(ajax) {
 alert("Error making Ajax request:" +
 "\n\nServer status:\n" + ajax.status + " " + ajax.statusText +
 "\n\nServer response text:\n" + ajax.responseText);
}

for user's (and developer's) benefit, show a message if a request fails
a good failure message shows the HTTP error code and status text

Creating a POST request

new Ajax.Request(

 "url",
 {
 method: "POST", // optional

 parameters: { name: value, name: value, ..., name: value },

 onSuccess: functionName,

 onFailure: functionName
 }
);

Ajax.Request can also be used to post data to a web server
method should be changed to "post" (or omitted; post is default)
any query parameters should be passed as a parameters parameter, written between {} braces as

name: value pairs
get request parameters can also be passed this way, if you like

Prototype's Ajax Updater

 new Ajax.Updater(

 "id",

 "url",
 {
 method: "get"
 }
);

Ajax.Updater can be used if you want to fetch a file via Ajax and inject its text/HTML contents
into an onscreen element
additional (1st) parameter specifies the id of the element into which to inject the content

Ajax code bugs (10.2.5)

When writing Ajax programs, there are new kinds of bugs that are likely to appear.

Nothing happens!
The responseText or responseXML has no properties.
The data isn't what I expect.

How do we find and fix such bugs?

Debugging Ajax code

Net tab shows each request, its parameters, response, any errors
expand a request with + and look at Response tab to see Ajax result

XMLHttpRequest security restrictions

cannot be run from a web page stored on your hard drive
can only be run on a web page stored on a web server
can only fetch files from the same site that the page is on

www.foo.com/a/b/c.html can only fetch from www.foo.com

10.3: XML

10.1: Ajax Concepts
10.2: Using XMLHttpRequest
10.3: XML

What is XML?

XML: a specification for creating languages to store data; used to share data between systems
a basic syntax of tags & attributes
languages written in XML specify tag names, attribute names, and rules of use
Example: XHTML is a "flavor" of XML

an adaptation of old HTML to fit XML's syntax requirements
XML specifies tag syntax: <... ...="..."></...>
HTML contributes tag names (e.g. h1, img) and attributes (id/class on all elements,
src/alt on img tag)

An example XML file

<?xml version="1.0" encoding="UTF-8"?>
<note>
 <to>Tove</to>
 <from>Jani</from>
 <subject>Reminder</subject>
 <message language="english">
 Don't forget me this weekend!
 </message>
</note>

begins with an xml header tag, then a single document tag (in this case, note)
tag, attribute, and comment syntax is identical to XHTML's

What tags are legal in XML?

any tag you want; the person storing the data can make up their own tag structure
example: a person storing data about email messages may want tags named to, from, subject
example: a person storing data about books may want tags named book, title, author
"Garden State" XML: if you're feeling unoriginal, make up some XML nobody's ever done before

<bloop bleep="flibbetygibbet">quirkleblat</bloop>

Schemas

schema: an optional set of rules specifying which tags and attributes are valid, and how they can be
used together
used to validate XML files to make sure they follow the rules of that "flavor"

XHTML has a schema; W3C validator uses it to validate
doctype at top of XHTML file specifies schema

two ways to define a schema:
Document Type Definition (DTD)
W3C XML Schema

(we won't cover schemas any further here)

Uses of XML

XML data comes from many sources on the web:
web servers store data as XML files
databases sometimes return query results as XML
web services use XML to communicate

XML languages are used for music, math, vector graphics
popular use: RSS for news feeds & podcasts

Pros and cons of XML

pro:
easy to read (for humans and computers)
standard format makes automation easy
don't have to "reinvent the wheel" for storing new types of data
international, platform-independent, open/free standard
can represent almost any general kind of data (record, list, tree)

con:
bulky syntax/structure makes files large; can decrease performance

example: quadratic formula in MathML
can be hard to "shoehorn" data into an intuitive XML format

won't need to know how for this class

Fetching XML using AJAX (template)

 new Ajax.Request(

 "url",
 {
 method: "get",

 onSuccess: functionName
 }
);
 ...

function functionName(ajax) {
 do something with ajax.responseXML;
}

ajax.responseText contains the XML data in plain text
ajax.responseXML is a pre-parsed DOM object representing the XML file as a tree (more useful)

Using XML data in a web page

custom flavor of XML needs to be converted to XHTML, then injected into page
we will transform using Javascript XML DOM
basic technique:

fetch XML data using Ajax1.
examine the responseXML object, using DOM methods and properties2.
extract data from XML elements and wrap them in HTML elements3.
inject HTML elements into web page4.

other ways to transform XML (not covered): CSS, XSLT

Recall: Javascript XML (XHTML) DOM

All of the DOM properties and methods we already know can be used on XML nodes:

properties:
firstChild, lastChild, childNodes, nextSibling, previousSibling,
parentNode
nodeName, nodeType, nodeValue, attributes

methods:
appendChild, insertBefore, removeChild, replaceChild
getElementsByTagName, getAttribute, hasAttributes, hasChildNodes

XML DOM tree structure

<?xml version="1.0" encoding="UTF-8"?>
<categories>
 <category>children</category>
 <category>computers</category>
 ...
</categories>

the XML tags have a tree structure
DOM nodes have parents, children, and siblings

Analyzing a fetched XML file using DOM

<?xml version="1.0" encoding="UTF-8"?>
<foo bloop="bleep">
 <bar/>
 <baz><quux/></baz>
 <baz><xyzzy/></baz>
</foo>

We can use DOM properties and methods on ajax.responseXML:

// zeroth element of array of length 1

var foo = ajax.responseXML.getElementsByTagName("foo")[0];

// same
var bar = foo.getElementsByTagName("bar")[0];

// array of length 2

var all_bazzes = foo.getElementsByTagName("baz");

// string "bleep"

var bloop = foo.getAttribute("bloop");

Recall: Pitfalls of the DOM

<?xml version="1.0" encoding="UTF-8"?>
<foo bloop="bleep">
 <bar/>
 <baz><quux/></baz>
 <baz><xyzzy/></baz>
</foo>

We are reminded of some pitfalls of the DOM:

// works - XML prolog is removed from document tree

var foo = ajax.responseXML.firstChild;

// WRONG - just a text node with whitespace!
var bar = foo.firstChild;

// works

var first_baz = foo.getElementsByTagName("baz")[0];

// WRONG - just a text node with whitespace!

var second_baz = first_baz.nextSibling;

// works - why?

var xyzzy = second_baz.firstChild;

Larger XML file example

<?xml version="1.0" encoding="UTF-8"?>
<bookstore>
 <book category="cooking">
 <title lang="en">Everyday Italian</title>
 <author>Giada De Laurentiis</author>
 <year>2005</year><price>30.00</price>
 </book>
 <book category="computers">
 <title lang="en">XQuery Kick Start</title>
 <author>James McGovern</author>
 <year>2003</year><price>49.99</price>
 </book>
 <book category="children">
 <title lang="en">Harry Potter</title>
 <author>J K. Rowling</author>
 <year>2005</year><price>29.99</price>
 </book>
 <book category="computers">
 <title lang="en">Learning XML</title>
 <author>Erik T. Ray</author>
 <year>2003</year><price>39.95</price>
 </book>
</bookstore>

Navigating the node tree

don't have ids or classes to use to get specific nodes
firstChild/nextSibling properties are unreliable
best way to walk the tree is using getElementsByTagName:

node.getElementsByTagName("tagName")

get an array of all node's children that are of the given tag ("book", "subject", etc.)
can be called on the overall XML document or on a specific node

node.getAttribute("attributeName")

gets an attribute from a node (e.g., category, lang)

Navigating node tree example

// make a paragraph for each book about computers
var books = ajax.responseXML.getElementsByTagName("book");
for (var i = 0; i < books.length; i++) {
 var category = books[i].getAttribute("category");
 if (category == "computers") {
 var title = books[i].getElementsByTagName("title")[0].firstChild.nodeValue;
 var author = books[i].getElementsByTagName("author")[0].firstChild.nodeValue;

 // make an XHTML <p> tag based on the book's XML data
 var p = document.createElement("p");
 p.innerHTML = title + ", by " + author;
 document.body.appendChild(p);
 }
}

A historical interlude: why XHTML?

in XML, different "flavors" can be combined in single document
theoretical benefit of including other XML data in XHTML

nobody does this
most embedded data are in non-XML formats (e.g., Flash)

non-XML data must be embedded another way (we'll talk about this later on)
requires browser/plugin support for other "flavor" of XML

development slow to nonexistent
most XML flavors are specialized uses

Why XML in AJAX?

most data you want are provided in XML
the de facto universal format

the browser can already parse XML (i.e., XHTML) into DOM objects
DOM only defined for XML-based formats, may not map directly to another format

would have to manually parse a different format
simple formats can be parsed manually from ajax.responseText
most data are easier to manipulate as DOM objects than to parse manually

Debugging responseXML in Firebug

can examine the entire XML document, its node/tree structure

