
Web Programming Step by Step
Chapter 5

PHP for Server-Side Programming

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

5.1: Server-Side Basics

5.1: Server-Side Basics

5.2: PHP Basic Syntax
5.3: Embedded PHP
5.4: Advanced PHP Syntax

URLs and web servers

http://server/path/file

usually when you type a URL in your browser:
your computer looks up the server's IP address using DNS
your browser connects to that IP address and requests the given file
the web server software (e.g. Apache) grabs that file from the server's local file system,
and sends back its contents to you

some URLs actually specify programs that the web server should run, and then send their
output back to you as the result:

https://webster.cs.washington.edu/quote2.php

the above URL tells the server webster.cs.washington.edu to run the
program quote2.php and send back its output

Server-Side web programming

server-side pages are programs written using one of many web programming
languages/frameworks

examples: PHP, Java/JSP, Ruby on Rails, ASP.NET, Python, Perl
the web server contains software that allows it to run those programs and send back their
output as responses to web requests
each language/framework has its pros and cons

we use PHP for server-side programming in this textbook

What is PHP? (5.1.2)

PHP stands for "PHP Hypertext Preprocessor"
a server-side scripting language
used to make web pages dynamic:

provide different content depending on context
interface with other services: database, e-mail, etc
authenticate users
process form information

PHP code can be embedded in XHTML code

Lifecycle of a PHP web request (5.1.1)

browser requests a .html file (static content): server just sends that file
browser requests a .php file (dynamic content): server reads it, runs any script code inside
it, then sends result across the network

script produces output that becomes the response sent back

Why PHP?

There are many other options for server-side languages: Ruby on Rails, JSP, ASP.NET, etc. Why
choose PHP?

free and open source: anyone can run a PHP-enabled server free of charge
compatible: supported by most popular web servers
simple: lots of built-in functionality; familiar syntax
available: installed on UW's servers (Dante, Webster) and most commercial web hosts

Hello, World!

The following contents could go into a file hello.php:

<?php
print "Hello, world!";
?>

Hello, world!

a block or file of PHP code begins with <?php and ends with ?>
PHP statements, function declarations, etc. appear between these endpoints

Viewing PHP output

you can't view your .php page on your local hard drive; you'll either see nothing or see the
PHP source code
if you upload the file to a PHP-enabled web server, requesting the .php file will run the
program and send you back its output

5.2: PHP Basic Syntax

5.1: Server-Side Basics
5.2: PHP Basic Syntax

5.3: Embedded PHP
5.4: Advanced PHP Syntax

Console output: print (5.2.2)

print "text";

print "Hello, World!\n";
print "Escape \"chars\" are the SAME as in Java!\n";

print "You can have
line breaks in a string.";

print 'A string can use "single-quotes". It\'s cool!';

Hello, World! Escape "chars" are the SAME as in Java! You can have line breaks in a string. A string can use

"single-quotes". It's cool!

some PHP programmers use the equivalent echo instead of print

Variables (5.2.5)

$name = expression;

$user_name = "PinkHeartLuvr78";
$age = 16;
$drinking_age = $age + 5;
$this_class_rocks = TRUE;

names are case sensitive; separate multiple words with _
names always begin with $, on both declaration and usage
always implicitly declared by assignment (type is not written)
a loosely typed language (like JavaScript or Python)

Types (5.2.3)

basic types: int, float, boolean, string, array, object, NULL
test what type a variable is with is_type functions, e.g. is_string
gettype function returns a variable's type as a string (not often needed)

PHP converts between types automatically in many cases:
string → int auto-conversion on +
int → float auto-conversion on /

type-cast with (type):
$age = (int) "21";

Operators (5.2.4)

+ - * / % . ++ --
= += -= *= /= %= .=
== != === !== > < >= <=
&& || !
== just checks value ("5.0" == 5 is TRUE)
=== also checks type ("5" === 5 is FALSE)
many operators auto-convert types: 5 < "7" is TRUE

int and float types

$a = 7 / 2; # float: 3.5
$b = (int) $a; # int: 3
$c = round($a); # float: 4.0
$d = "123"; # string: "123"
$e = (int) $d; # int: 123

int for integers and float for reals
division between two int values can produce a float

Math operations

$a = 3;
$b = 4;
$c = sqrt(pow($a, 2) + pow($b, 2));

math functions

abs ceil cos floor log log10 max

min pow rand round sin sqrt tan

math constants

M_PI M_E M_LN2

the syntax for method calls, parameters, returns is the same as Java

Comments (5.2.7)

single-line comment

// single-line comment

/*
multi-line comment
*/

like Java, but # is also allowed
a lot of PHP code uses # comments instead of //
we recommend # and will use it in our examples

String type (5.2.6)

$favorite_food = "Ethiopian";
print $favorite_food[2]; # h

zero-based indexing using bracket notation
string concatenation operator is . (period), not +

5 + "2 turtle doves" === 7
5 . "2 turtle doves" === "52 turtle doves"

can be specified with "" or ''

String functions

$name = "Kenneth Kuan";
$length = strlen($name); # 12
$cmp = strcmp($name, "Jeff Prouty"); # > 0
$index = strpos($name, "e"); # 1
$first = substr($name, 8, 4); # "Kuan"
$name = strtoupper($name); # "KENNETH KUAN"

Name Java Equivalent

explode, implode split, join

strlen length

strcmp compareTo

strpos indexOf

substr substring

strtolower, strtoupper toLowerCase, toUpperCase

trim trim

Interpreted strings

$age = 16;
print "You are " . $age . " years old.\n";
print "You are $age years old.\n"; # You are 16 years old.

strings inside " " are interpreted
variables that appear inside them will have their values inserted into the string

strings inside ' ' are not interpreted:

print 'You are $age years old.\n'; # You are $age years old.\n

if necessary to avoid ambiguity, can enclose variable in {}:

print "Today is your $ageth birthday.\n"; # $ageth not found
print "Today is your {$age}th birthday.\n";

for loop (same as Java) (5.2.9)

for (initialization; condition; update) {

 statements;
}

for ($i = 0; $i < 10; $i++) {
 print "$i squared is " . $i * $i . ".\n";
}

bool (Boolean) type (5.2.8)

$feels_like_summer = FALSE;
$php_is_rad = TRUE;

$student_count = 217;
$nonzero = (bool) $student_count; # TRUE

the following values are considered to be FALSE (all others are TRUE):
0 and 0.0 (but NOT 0.00 or 0.000)
"", "0", and NULL (includes unset variables)
arrays with 0 elements

can cast to boolean using (bool)
FALSE prints as an empty string (no output); TRUE prints as a 1

TRUE and FALSE keywords are case insensitive

if/else statement

if (condition) {

 statements;

} elseif (condition) {
 statements;
} else {

 statements;
}

NOTE: although elseif keyword is much more common, else if is also supported

while loop (same as Java)

while (condition) {

 statements;
}

do {

 statements;

} while (condition);

break and continue keywords also behave as in Java

NULL

$name = "Victoria";
$name = NULL;
if (isset($name)) {
 print "This line isn't going to be reached.\n";
}

a variable is NULL if
it has not been set to any value (undefined variables)
it has been assigned the constant NULL
it has been deleted using the unset function

can test if a variable is NULL using the isset function
NULL prints as an empty string (no output)

5.3: Embedded PHP

5.1: Server-Side Basics
5.2: PHP Basic Syntax
5.3: Embedded PHP

5.4: Advanced PHP Syntax

Embedding code in web pages

most PHP programs actually produce HTML as their output
dynamic pages; responses to HTML form submissions; etc.

an embedded PHP program is a file that contains a mixture of HTML and PHP code

A bad way to produce HTML in PHP

<?php
print "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.1//EN\"\n";
print " \"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd\">\n";
print "<html xmlns=\"http://www.w3.org/1999/xhtml\">\n";
print " <head>\n";
print " <title>My web page</title>\n";
...
?>

printing HTML code with print statements is ugly and error-prone:
must quote the HTML and escape special characters, e.g. \"
must insert manual \n line breaks after each line

don't print HTML; it's bad style!

Syntax for embedded PHP (5.3.1)

HTML content

<?php

PHP code
?>

HTML content

any contents of a .php file that are not between <?php and ?> are output as pure HTML
can switch back and forth between HTML and PHP "modes"

Embedded PHP example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>CSE 190 M: Embedded PHP</title></head>
 <body>
 <h1>Geneva's Counting Page</h1>
 <p>Watch how high I can count:
 <?php
 for ($i = 1; $i <= 10; $i++) {
 print "$i\n";
 }
 ?>
 </p>
 </body>
</html>

the above code would be saved into a file such as count.php
How many lines of numbers will appear? (View Source!)

Embedded PHP + print = bad

...
 <h1>Geneva's Counting Page</h1>
 <p>Watch how high I can count:
 <?php
 for ($i = 1; $i <= 10; $i++) {
 print "$i\n";
 }
 ?>
 </p>

best PHP style is to use as few print/echo statements as possible in embedded PHP
code
but without print, how do we insert dynamic content into the page?

PHP expression blocks (5.3.2)

<?= expression ?>

<h2>The answer is <?= 6 * 7 ?></h2>

The answer is 42

PHP expression block: a small piece of PHP that evaluates and embeds an expression's
value into HTML

<?= expression ?> is equivalent to:

<?php print expression; ?>

useful for embedding a small amount of PHP (a variable's or expression's value) in a
large block of HTML without having to switch to "PHP-mode"

Expression block example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>CSE 190 M: Embedded PHP</title></head>
 <body>
 <?php
 for ($i = 99; $i >= 1; $i--) {
 ?>
 <p><?= $i ?> bottles of beer on the wall,

 <?= $i ?> bottles of beer.

 Take one down, pass it around,

 <?= $i - 1 ?> bottles of beer on the wall.</p>
 <?php
 }
 ?>
 </body>
</html>

this code could go into a file named beer.php

Common error: unclosed braces

...
 <body>
 <p>Watch how high I can count:
 <?php
 for ($i = 1; $i <= 10; $i++) {
 ?>
 <?= $i ?>
 </p>
 </body>
</html>

if you open a { brace, you must have a matching } brace later
</body> and </html> above are inside the for loop, which is never closed

if you forget to close your braces, you'll see an error about 'unexpected $end'

Common error fixed

...
 <body>
 <p>Watch how high I can count:
 <?php
 for ($i = 1; $i <= 10; $i++) { # PHP mode
 ?>
 <?= $i ?> <!-- HTML mode -->
 <?php
 } # PHP mode
 ?>
 </p>
 </body>
</html>

Common error: Missing = sign

...
 <body>
 <p>Watch how high I can count:
 <?php
 for ($i = 1; $i <= 10; $i++) {
 ?>
 <? $i ?>
 <?php
 }
 ?>
 </p>
 </body>
</html>

a block between <? ... ?> is often interpreted the same as one between <?php ... ?>
PHP evaluates the code, but $i does not produce any output

Complex expression blocks

...
 <body>
 <?php
 for ($i = 1; $i <= 3; $i++) {
 ?>
 <h<?= $i ?>>This is a level <?= $i ?> heading.</h<?= $i ?>>
 <?php
 }
 ?>
 </body>

This is a level 1 heading.

This is a level 2 heading.

This is a level 3 heading.

expression blocks can even go inside HTML tags and attributes

5.4: Advanced PHP Syntax

5.1: Server-Side Basics
5.2: PHP Basic Syntax
5.3: Embedded PHP
5.4: Advanced PHP Syntax

Functions (5.4.1)

function name(parameterName, ..., parameterName) {

 statements;
}

function quadratic($a, $b, $c) {
 return -$b + sqrt($b * $b - 4 * $a * $c) / (2 * $a);
}

parameter types and return types are not written

Calling functions

name(parameterValue, ..., parameterValue);

$x = -2;
$a = 3;
$root = quadratic(1, $x, $a - 2);

if the wrong number of parameters are passed, it's an error

Default parameter values

function name(parameterName, ..., parameterName) {

 statements;
}

function print_separated($str, $separator = ", ") {
 if (strlen($str) > 0) {
 print $str[0];
 for ($i = 1; $i < strlen($str); $i++) {
 print $sep . $str[$i];
 }
 }
}

print_separated("hello"); # h, e, l, l, o
print_separated("hello", "-"); # h-e-l-l-o

if no value is passed, the default will be used (defaults must come last)

Variable scope: global and local vars

$school = "UW"; # global
...

function downgrade() {
 global $school;
 $suffix = "Tacoma"; # local

 $school = "$school $suffix";
 print "$school\n";
}

variables declared in a function are local to that function
variables not declared in a function are global
if a function wants to use a global variable, it must have a global statement

Including files: include() (5.4.2)

include("filename");

include("header.php");

inserts the entire contents of the given file into the PHP script's output page
encourages modularity
useful for defining reused functions like form-checking

Arrays (5.4.3)

$name = array(); # create
$name = array(value0, value1, ..., valueN);

$name[index] # get element value
$name[index] = value; # set element value
$name[] = value; # append

$a = array(); # empty array (length 0)
$a[0] = 23; # stores 23 at index 0 (length 1)
$a2 = array("some", "strings", "in", "an", "array");
$a2[] = "Ooh!"; # add string to end (at index 5)

to append, use bracket notation without specifying an index
element type is not specified; can mix types

Array functions

function name(s) description

count number of elements in the array

print_r print array's contents

array_pop, array_push,
array_shift, array_unshift

using array as a stack/queue

in_array, array_search, array_reverse,
sort, rsort, shuffle

searching and reordering

array_fill, array_merge, array_intersect,
array_diff, array_slice, range

creating, filling, filtering

array_sum, array_product, array_unique,
array_filter, array_reduce

processing elements

Array function example

$tas = array("MD", "BH", "KK", "HM", "JP");
for ($i = 0; $i < count($tas); $i++) {
 $tas[$i] = strtolower($tas[$i]);
} # ("md", "bh", "kk", "hm", "jp")
$morgan = array_shift($tas); # ("bh", "kk", "hm", "jp")
array_pop($tas); # ("bh", "kk", "hm")
array_push($tas, "ms"); # ("bh", "kk", "hm", "ms")
array_reverse($tas); # ("ms", "hm", "kk", "bh")
sort($tas); # ("bh", "hm", "kk", "ms")
$best = array_slice($tas, 1, 2); # ("hm", "kk")

the array in PHP replaces many other collections in Java
list, stack, queue, set, map, ...

The foreach loop (5.4.4)

foreach ($array as $variableName) {

 ...
}

$stooges = array("Larry", "Moe", "Curly", "Shemp");
for ($i = 0; $i < count($stooges); $i++) {
 print "Moe slaps {$stooges[$i]}\n";
}
foreach ($stooges as $stooge) {
 print "Moe slaps $stooge\n"; # even himself!
}

a convenient way to loop over each element of an array without indexes

Splitting/joining strings

$array = explode(delimiter, string);

$string = implode(delimiter, array);

$s = "CSE 190 M";
$a = explode(" ", $s); # ("CSE", "190", "M")
$s2 = implode("...", $a); # "CSE...190...M"

explode and implode convert between strings and arrays
for more complex string splitting, we'll use regular expressions (later)

Unpacking an array: list

list($var1, ..., $varN) = array;

$line = "stepp:17:m:94";
list($username, $age, $gender, $iq) = explode(":", $line);

the list function accepts a comma-separated list of variable names as parameters
assign an array (or the result of a function that returns an array) to store that array's contents
into the variables

Non-consecutive arrays

$autobots = array("Optimus", "Bumblebee", "Grimlock");
$autobots[100] = "Hotrod";

the indexes in an array do not need to be consecutive
the above array has a count of 4, with 97 blank elements between "Grimlock" and
"Hotrod"

PHP file I/O functions (5.4.5)

reading/writing entire files: file_get_contents, file_put_contents
asking for information: file_exists, filesize, fileperms, filemtime,
is_dir, is_readable, is_writable, disk_free_space
manipulating files and directories: copy, rename, unlink, chmod, chgrp, chown,
mkdir, rmdir
reading directories: scandir, glob

Reading/writing files

$text = file_get_contents("schedule.txt");
$lines = explode("\n", $text);
$lines = array_reverse($lines);
$text = implode("\n", $lines);
file_put_contents("schedule.txt", $text);

file_get_contents returns entire contents of a file as a string
if the file doesn't exist, you'll get a warning

file_put_contents writes a string into a file, replacing any prior contents

Reading files example

Returns how many lines in this file are empty or just spaces.
function count_blank_lines($file_name) {
 $text = file_get_contents($file_name);
 $lines = explode("\n", $text);
 $count = 0;
 foreach ($lines as $line) {
 if (strlen(trim($line)) == 0) {
 $count++;
 }
 }
 return $count;
}

...
print count_blank_lines("ch05-php.html");

Reading directories

$folder = "images";
$files = scandir($folder);
foreach ($files as $file) {
 if ($file != "." && $file != "..") {
 print "I found an image: $folder/$file\n";
 }
}

scandir returns an array of all files in a given directory
annoyingly, the current directory (".") and parent directory ("..") are included in the
array; you probably want to skip them

