8.2 DOM Element Objects 299

8.2 DOM Element Objects

In our previous examples we have seen DOM objects for elements on a page. But our mteraction
with these objects has been very limited: we've set the innerHTML for span elements and we've mter-
acted with the value of text boxes. These DOM objects are actually rich with other properties and
methods we can use in our JavaScruipt code. In this section we'll explore some of the basic features of
DOM objects and mnteracting with them. We'll explore DOM interactions 1 much more detail 1n the
next chapter.

8.2.1 Interacting with Text

Much of the manipulation we want to pertorm on DOM objects involves getting, manipulating,
and setting text. The text mside an element 1s accessible as a string, and we can manipulate these
strings using the strung methods shown 1 the previous chapter. But the means of accessing the ele-
ment text differs for various elements, so it merits some discussion here. There are also some brows-
er ncompatibilities related to text content.

The ECMAScript-standard way of changing the text inside an element 1s to set its textContent
property. This property 1s supported by all standards-compliant browsers, but unfortunately not by
Internet Explorer, which uses a non-standard property named innerText mstead. Because of this
ugly incompatibility, so far in this textbook we've used the innerHTML property mstead to set text.
Even though innerHTML is not currently part of the ECMA JavaScript standard, 1t will be in the next
verston of the ECMAScript standard and 1s already supported by every major browser. These proper-

ties are summarized in Table 8.9.

Property Name Description Supported By
innerHTML text and/or HTML tags inside a node all browsers (non-standard)
innerText text (without HTML tags) mnside anode | IE only
textContent text (without HTML tags) inside a node all browsers except IE
value text value mside a form control all browsers

Table 8.9 Various DOM properties for getting text/HTML content

For example, to set the paragraph with an id ot error to show a particular error message, you
could wiite the following code, which would work on standards-compliant browsers:

var errorArea = document.getElementById("error");
errorArea.textContent = "Error: Missing last name";

It you want the code to work on all browsers including Internet Explorer, you could write:

// more cross-browser compatible
var errorArea = document.getElementById("error");
errorArea.innerText = errorArea.textContent = "Error: Missing last name";

We tind the dual assignment tedious and therefore use the innerHTML property instead to set the
text. Technically setting textContent would be more stylistically correct, but the browser compati-
bility problems make it too cumbersome tor our taste.

300 Chapter 8 The Document Object Model (DOM)

// also cross-browser compatible
var errorArea = document.getElementById("error");
errorArea.innerHTML = "Error: Missing last name";

An imnteresting feature of the innerHTML property is that it can be used not only to get/set text
content, but also to add new HTML elements and tags to a page. This ability 1s very powertful, but 1t
can be abused and often leads to ugly code. Example 8.17 demonstrates the use of innerHTML to add
tags to a page. We strongly discourage this style; we'll show a better style later in this chapter for add-
ing new elements to a page using a method called document.createElement.

// bad code (don't insert HTML tags using innerHTML!)
var div = document.getElementById("mainarea");
div.innerHTML = "Check it out!";

Example 8.17 Abusing innerHTML

Example Program: Shuffler

We've already seen that to get and set the text of most normal elements, you use the previous
properties such as innerHTML. It the element i question 1s a form control, such as an input text
box or textarea, we access the text using the value property mstead. You can also set new text to
appear in the element by assigning value a new string.

Suppose we want to write a page that lets the user type in lines of mput into a textarea, with a
Shuftle button below that randomly rearranges the order of the lines when clicked. Example 8.18
shows the relevant HTML code and its appearance in the browser.

<hl>Ye 01d Shuffle Tool</hl>

<div>
Items (one per line):

<textarea id="items" rows="10" cols="80"></textarea>
<button id="shuffle">Shuffle It!</button>

</div>

Ye Old Shuffle Tool

Ttems (one per line):

Example 8.18 Shuffler HTML code

Probably the trickiest part of this program 1s the actual algorithm for shuftling the array. Since 1t
1s difficult and also mught be of general use i other programs, let's wuite a function called shuffle
that accepts an array as a parameter and shuftles that array's elements. Keeping the shuftling algo-
rithm from the DOM and event code will help us keep the code cleaner and avoid bugs.

A simple algonithm for shuffling 1s to loop over the elements of the array, choosing a new ran-
dom mdex for each element and swapping it to that mndex. To make sure that the algorithm 1s fauly

8.2 DOM Element Objects 301

balanced (that each arrangement of the elements 1s equally likely), we must make sure to choose a
random index greater than or equal to the element's current position. (The proof that our algorithm 1s
balanced 1s outside the scope of this textbook.) Example 8.19 shows the code.

// Randomly rearranges the elements of the given array.
function shuffle(a) {
for (var i = 9; i < a.length; i++) {
// pick a random index j such that i <= j <= a.length - 1
var j = i + parseInt(Math.random() * (a.length - i));

// swap the element to that index
var temp = a[i];

a[i] = a[3jl;

a[j] = temp;

Example 8.19 Array shuffle code

It can be tough to get a tricky function like this wotking straight away. We suggest typing mn the
shuffle function mto your s file, then opening the page in Firefox and popping up the Firebug
console. Then declare one or two short arrays and call the shuffle function on them. Inspect the
results to make sure that they look suitably random. Once we're convinced that our function works,
we go on to the rest of the code. Figure 8.1 demonstrates this techmique.

#" Inspect Clear Profile G, =26
Console~ | HTML (S5 Script DOM Net Dptigns-

>»»> var a = [1, 2, 2, 4, =21

1,2,3,4,5

>>»>» shuffle(a):

x> a

3,1,5,2,4

> | =
Figure 8.1 Testing shuffle function in Firebug console

Now that our shuttling algonithm 1s implemented, the rest of the code to attach the event han-
dlers can be wntten. When the Shuffle button 1s clicked, we'll grab the text from the items text area,
split 1t into an array of lines using i1ts split method, and then call the shuffle function on that array
of lines. Example 8.20 shows the code.

window.onload = function() {
document.getElementById("shuffle").onclick = shuffleClick;

}s

function shuffleClick() {
var items = document.getElementById("items");
var lines = items.value.split("\n"); // split into lines
shuffle(lines);
items.value = lines.join("\n"); // put back into text area

}

Example 8.20 Shuffler JavaScript code

302 Chapter 8 The Document Object Model (DOM)

8.2.2 Adjusting Styles

The DOM can be used to modity the styles and onscreen appearance of page elements. This 1s
done through the DOM object's style property. This property represents the HTML element's
style attubute and directly connects to the CSS for that element. The style property 1s not a string
but instead an object that contains dozens ot properties, one for each possible CSS property of that
element. The syntax for accessing these properties 1s shown in Example 8.21.

element. style. property
element.style.property = value;

// get value
// set value

Example 8.21 DOM style property

For most of the CSS properties, there 1s a corresponding DOM style object property with the

same name. For example, suppose you have the following HTML code in your page:

<p id="slogan">Eat at Joe's. You can't beat our prices!</p>

To set the preceding paragraph's text color to red, you would use the following JavaScript code:

var paragraph = document.getElementById("slogan");
paragraph.style.color = "red";

The names of the DOM style properties are as similar as possible to their CSS counterparts, but
there are a few small differences. DOM style properties can't have dashes in them because - 1s the
subtraction operator in JavaScript. Wherever there would have been a dash, the DOM property's
name capitalizes the next letter. For example, the CSS background-color property is called
backgroundColor in the DOM.

Table 8.10 lists several examples of the mapping between CSS property names and DOM prop-
erty names. This 1s obviously an mncomplete list, since there are too many style properties to list here.
But this chapter's References section points to a page on the W3Schools web site that has a complete
list of all style properties. All values tor DOM style properties are stored as strings, with an empty
stung "" as the value if the property 1s not set.

CSS Property Name DOM Property Name Example
background-color backgroundColor "#ffoodd"
border border "lem solid red"
border-top-width borderTopWidth "3px"
color color "red"
float cssFloat "left"
font-weight fontWeight "bold"
font-size fontSize "12pt"
z-index zIndex "456"

Table 8.10 DOM style property names

A DOM object's style property 1s usetul for setting new styles but has some 1ssues when trying
to examine pre-existing element styles defined in CSS, which we'll explore 1n a later section. In the
next chapter we will learn a workaround for this limutation.

