
A "CS 1.5" Introduction to Web Programming
Marty Stepp

Computer Science & Engineering
University of Washington

Seattle, WA

stepp@cs.washington.edu

Jessica Miller
Computer Science & Engineering

University of Washington
Seattle, WA

jessica@cs.washington.edu

Victoria Kirst
Computer Science & Engineering

University of Washington
Seattle, WA

vkirst@cs.washington.edu

ABSTRACT
Web programming is increasing rapidly in importance at the
university level, yet there is no consensus about when and how it
should be incorporated into the computer science curriculum.
This paper describes our results in teaching an experimental
introductory web programming course at the University of
Washington that has had great success in attracting large numbers
of students from inside and outside the computer science major.
The course requires CS1 as a prerequisite, striking a good balance
between making the course open to non-majors but also more
rigorous for students with programming background. We classify
the course as "CS 1.5" because many of our students take it
between CS1 and CS2. We use our evaluation data to argue that a
web programming course at this level leads to a great deal of
student interest and enthusiasm, broadens the reach of computer
science, and provides a valuable service to other departments.

Categories and Subject Descriptors
D.1.0 [Programming Techniques]: General—Web.
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces --- Web-based interaction.
K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer Science Education.

General Terms
Human Factors, Languages, Measurement, Standardization.

Keywords
Pedagogy, Computer Science Education, Web Programming,
CS1.5, HTTP, HTML, XHTML, CSS, PHP, JavaScript, XML,
Ajax, SQL, databases, web security.

1. INTRODUCTION
More and more of the world's software is being run within a

web browser. Web software offers many legitimate benefits: ease
of deployment, ubiquity of access to a global audience, and
availability of server-side data and services. More recently, more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE'09, March 3-7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03...$5.00.

mature web standards and technologies such as Ajax have taken
the web beyond simple document processing to the current "Web
2.0." With these advances the relevance of teaching web
programming at the college level has also increased.

But web programming's role in the computer science
curriculum has not yet been clearly defined. Many universities
teach web programming only as part of information science
degrees or other programs separate from computer science. This
may reflect the fact that some consider web programming a lesser
art form, not worthy of inclusion in a comp-sci degree program.
Nonetheless many CS departments possess the quirk of not
teaching web programming yet offering senior-level courses that
require students to complete web projects, such as software
engineering, databases, HCI, and capstone project courses.

Things are slowly changing, as more computer science
programs now offer rigorous web programming classes. But there
does not seem to be a consensus about where in the curriculum,
and at what level of detail, to introduce this material. Some offer
it primarily to non-majors in CS0 at a low level of depth, focusing
on HTML and JavaScript [5]. Others offer junior- and senior-
level capstone or web project courses [10], often with multi-week
assignments done in larger groups. The courses vary widely in
the particular languages and technologies taught, particularly
server-side web languages such as PHP and Ruby on Rails.

The authors led a SIGCSE 2008 Birds of a Feather session
[9] in which we conversed with and informally surveyed
instructors about their web courses. As shown in the following
chart, essentially all attendees teach a course that covers HTML,
Cascading Style Sheets (CSS), JavaScript for client-side
interaction, and a server-side language. PHP was the most widely
taught server language, followed by Java/JSP solutions and then
others such as Ruby, Perl, and Microsoft's .NET Framework.

Table 1. SIGCSE 2008 BoF Web Language Survey Data

Language Count

PHP 9
Java/JSP 7
Perl/CGI 4

Ruby on Rails 3
Microsoft .NET 2

Python/other 2

The BoF attendees reported that some of the variation in web
programming courses is because many departments do not devote
significant resources to teaching it, leaving the work to a single
devoted faculty member. Others pointed out that the modern CS

curriculum is already hefty and that it is difficult to add another
course to it without drawing ire from students and faculty alike.

In this paper we discuss our own results at the University of
Washington with adding an introductory web programming
course to our Computer Science & Engineering curriculum.
During these course offerings we gathered extensive survey data
from the students for assessment purposes. We will present
survey data supporting our hypothesis that offering a web course
early in the curriculum, particularly just after CS1, proves to be
beneficial and enjoyable for students. Additionally, we will argue
that offering a web course at this level also provides a valuable
service to non-majors and other departments and increases
enrollment in later courses in the computer science curriculum.

2. RELATED WORK
Other universities offer similar web programming courses

and have published findings. Yue and Ding of Houston-Clear
Lake [10], Noonan of William and Mary [4] and Jackson of
Duquesne University [3] are among several who offer a senior-
level course in web application development, surveying client-
and server-side technologies along the way. Dealing only with
CS majors at the senior level affords them the opportunity to
cover technologies at a deeper level in a shorter amount of time.

Dave Reed of Creighton University [5] published his version
of a non-majors CS0 focusing on basic JavaScript programming.
This approach has been discussed by Zimmerman [11] and others.
This model has become arguably the canonical CS0 course and is
successful at many institutions. A fundamental difference from
our own work is that their material is presented at a lighter level
with no programming prerequisite, and that the course is largely
confined to client-side programming in JavaScript without
exploring other technologies. Many universities offer courses in
web page design using HTML but do not focus on programming
or interactive sites (many are offered by departments outside CS)
and are therefore excluded from the discussion.

Michael Gousie of Wheaton College [2] offers one of the
more similar courses to our own, targeting non-majors. The
Wheaton course focuses on web graphics using Java applets and
the AWT framework, rather than rich internet application
development. Our investigations have not led us to the discovery
of other published web programming courses targeting this
specific audience at this level in the undergraduate curriculum.

3. OUR WEB PROGRAMMING COURSE
In September 2006, a group of educators was flown to

Google for a meeting to discuss web programming in the
undergraduate curriculum. Mark Lucovsky, a senior engineering
manager at Google, gave a presentation encouraging educators to
teach introductory web programming. Google reports to UW and
other institutions that students are under-prepared to work on web
software development as they complete their undergraduate
studies. This is consistent with other feedback our department
receives at its yearly industry affiliates' meetings, where
companies ask for students more familiar with web programming.
To this end, Google funded a proposal from UW to offer a web
programming course once per year in 2007 and 2008.

Google's original desire was for us to convert our Java CS1
course into a web programming course, but we instead chose the

lower-risk option of offering web programming as an elective
course targeted at non-majors who have just completed CS1. In
the common parlance this would be considered a "CS 1.5" course.
Basic programming skills (loops, selection, variables, arrays,
functions) are required, but no web programming experience is
expected. This prerequisite proved very important, because
assuming a modicum of programming knowledge allowed us to
cover topics at a more brisk pace, with less focus on basic syntax
and concepts like parameters and variables, and introduce more
elaborate and interesting programming assignments.

Figure 1 summarizes declared majors of students enrolled in
the web course in Spring 2008. Students listed as "Pre-Major"
have declared a desire to entire CSE or another engineering major
but have not yet applied for admission to the program.

Computer

Science

10%

Undeclared

Major

54%

Computer

Engineering

4%

Applied

Math/Sciences

6%

Electrical

Engineering

5%

Physics

2%

Math

2%

Other

19%

Figure 1. Student Majors in Web Course

Despite limited advertising and the course not counting
toward our major, 92 students took it in 2007 and 192 in Spring
2008. 8% of the students were CS majors, and 92% were non-
majors. 81% of the students were men and 19% were women.

Table 2. Web Course Topics and Assignments

Topic Assignment

basic web pages with HTML/CSS Granny's Pies Page
web page layout with CSS IMDb Movie Review
JavaScript event-driven programming ASCIImation
JS Document Object Model (DOM) Fifteen Puzzle
Asynchronous JavaScript/XML (Ajax) Baby Name Surfer
PHP server-side programming To-Do List
HTML forms and server-side data NerdLuv dating site
databases and SQL Kevin Bacon problem

The major topics covered in the course and their
corresponding homework assignments are shown in Table 2.
Other topics covered in lecture include web security basics,
multimedia web content, web design and usability, Google's Ajax
web APIs, taking a web site "live" and managing a web server.
We chose to cover a breadth of topics, achieving depth through
repetition. For example, though only the first few assignments

were focused on HTML and CSS, later assignments also required
and evaluated the student's knowledge of those technologies.

In our planning we decided on several major goals of the
course. Unlike most other courses, we chose to teach only
standards-compliant constructs and code, using entirely free
software on the client and server. We focused on the most
modern versions of tools and languages, ignoring compatibility
with legacy software such as Internet Explorer 5.5 and HTML
4.01. We also worked constantly to keep the course's pace and
difficulty at a level palatable for non-majors who have just
finished CS1, reminding ourselves that most of the core audience
in the class was not bound to become part of our degree program.

Another difficult decision was the choice of a server-side
programming language. While the set of client-side technologies
is fairly standardized (HTML, CSS, JavaScript, etc.), server-side
languages vary widely between courses and textbooks. We
decided to focus on PHP as our single server-side language. PHP
is a flawed language, but it is simple to set up, both for the server
administrator (who merely needs to install PHP onto the web
server) and for the students (who can immediately upload .php
files that will run). JSP, Ruby, .NET, and other languages are
comparatively much more difficult to deploy and use to write
small, simple introductory programs. PHP also integrates very
well with Apache web server software, is completely free of
charge and free to distribute, is open-source, is the most widely
used and popular web language, and looks much like HTML, C,
and other languages with which the students are familiar.

We chose to leave out a few important topics like web
services and Flash, despite student interest in these technologies.
We felt that there were enough languages and tools already in the
course, and that these topics are more appropriate for a second
course in web application development. It is easy for a new
student to be overwhelmed by the amount of new syntax, APIs,
languages, and tools that are used in a course such as this one.
This is consistent with student feedback from our surveys.

The course had three 50-minute lectures per week, and one
50-minute lab session in which students would solve problems by
computer with TAs available to answer questions. Students were
not required to finish any particular number of problems, so long
as they worked for the entire 50-minute period. Student feedback
suggests that the lab sessions were very helpful; participation in
the first 7 of 10 lab sessions was mandatory, but 148 out of 192
students (77%) still chose to attend the final lab session despite it
not counting for course credit. Lab sessions also provided fertile
ground for the instructor and TAs to discover failures in our own
teaching by observing students' questions and struggles firsthand.

We believe that labs are particularly useful for this course.
When programming with web languages the concepts seem easy
to students, but details and bugs can be hard to find; many student
bugs don't show any output and are difficult to debug. Having a
lab TA to help find and fix these bugs was a crucial benefit.

Perhaps the greatest resource we have utilized in this course
is our teaching assistants. We follow the model proposed by
Reges [6] and also documented by Roberts [7] and Decker [1],
using undergraduates to staff our labs and provide office hours to
answer students' homework questions. The TAs are invaluable in
helping students fix software issues, teaching them to properly

debug the confusing new errors they encounter when
programming for the web, and closing gaps in the instructor's
explanation of the material. Good TA support is crucial when
expecting non-CS majors to solve tricky web problems.

The recommended software for the course was a plain text
editor such as TextPad or TextMate (Mac), along with the Firefox
browser. Other tools such as the extremely valuable Firebug
debugging plugin and the JsLint JavaScript syntax checker were
also introduced. Students uploaded their code to a central
dedicated LAMP server for the course, with each student having a
private directory for storing and testing his/her programs.

3.1 CHALLENGES AND DISCOVERIES
Web programming offers many unique challenges and

difficulties that we discovered while teaching this course.
Probably the most prominent difficulty is the set of new nasty
bugs that arise in web programming. Many of the most common
student mistakes, such as misspelling a tag in HTML, forgetting a
token in JavaScript, or capitalizing a variable's name incorrectly,
produce no output in the browser. The student is left with no
indicator that something is wrong and no clear way to find or fix
the problem. There are few tools for debugging, and many of the
tools that do exist are not made for new programmers. We expose
students to Firebug plugin early in the course for debugging. It
not only provides verbose error feedback but also the ability to
dynamically change a page on the fly and see the results, as well
as a full-featured JavaScript debugger and interpreter. Firebug is
an excellent tool and we use it extensively in our course. We also
use the W3C XHTML and CSS validators for finding mistakes in
syntax in those languages, as well as the JsLint JavaScript syntax
checker, which points out many common JavaScript bugs that
would otherwise produce no error or warning.

Perhaps the most frustrating tool is the browser itself;
incompatibility issues between browsers (largely flaws found in
Microsoft Internet Explorer) make robust web programming
unnecessarily difficult. We constrain our students to Firefox and
instruct them to code to published web standards, ignoring quirks
that may exist in Internet Explorer or other browsers. We provide
links to IE-only bugs and fixes for interested students.

There is a lack of good resources from which to learn
introductory web programming, particularly at the “CS 1.5” level.
There are many web tutorials, but the vast majority are sloppy, out
of date, or plain wrong. Sebesta [8] and Jackson [3] were the
most helpful textbooks we found, but neither was a good fit for
our course as both target a more advanced, 300-level web
programming course. We chose not to require a textbook in
Spring 2008 and instead relied on instructor-provided materials.
We have written a large number of lecture notes, tutorials, and
chapters for students to read about each week's material, as well as
providing links to our favorite external resources and references.

Some of the challenges we faced were unique to teaching this
subject and not to web programming itself. For example, the
student must learn many programming languages and
technologies in a short time, each introducing new syntax and new
programming paradigms such as event-driven programming,
client-server interaction, and so on. This is particularly tough at
universities like ours that are on the quarter system. We provide
"cheat sheets" and allow open-book exams to ease the pain of
learning so many new languages and so much syntax so quickly.

There is a proliferation of sloppy web code examples on the
various popular online tutorials, showing poor style, no
comments, and otherwise poor solutions. To combat these poor
examples, we rigidly enforce a two-part grading system covering
"external correctness" (the program's behavior, output, and
appearance) and "internal correctness" (the code's style, design,
documentation, elegance, and conformance to W3C web
standards), giving roughly equal grading weight to each.

A final and more subtle difficulty in a web programming
course is stopping students from copying each others' work, even
when said work is being placed onto the public web. To minimize
code theft, we allow students to post their work only to password-
protected web folders under the supervision of the course staff.

4. ASSESSMENT
During each course offering we gathered data from students.

A voluntary, anonymous survey was given to each student upon
submission of each assignment to assess what concepts were
challenging. Mid-quarter and end-of-quarter evaluations were
given to gauge satisfaction with the course and approach.

We acknowledge that self-reported data has inherent flaws.
That said, the original purpose of the surveys was to gather
feedback from the students to evaluate and improve the course.
We share this data to begin to provide evidence that such an
experimental course is worth developing. As the course matures,
we hope to refine the surveys and correlate data from different
terms to increase the reliability of the claims made here.

From our homework surveys, we found advanced JavaScript
DOM programming and building rich Ajax Web 2.0 applications
were among the most difficult concepts. This has caused us to
rethink our order of topics; we plan to move basic PHP server-
side programming and HTML forms earlier in the course and
delay event-driven DOM programming by two weeks. We believe
this will result in a more gradual difficulty curve.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

H
T

M
L/

C
SS

La
y

o
u

t

Ja
v

a
Sc

ri
p

t

JS
 D

O
M

A
ja

x
/X

M
L

W
e

b
 2

.0

P
H

P
/F

o
rm

s

P
H

P
/S

Q
L

Topic

S
co

re

Difficulty

Enjoyment

Figure 2. Homework Difficulty and Enjoyment Survey Data

Students were also asked what specific aspects of each
assignment were most interesting and most frustrating. A large
fraction of the students appreciated opportunities to be creative.
We incorporated this into each assignment, letting the student
choose background colors and images, customize text, and
provide their own custom links and content as much as possible

within the guidelines of the material we wanted to teach. We saw
the largest impact of this on our sixth assignment, a Web 2.0 To-
Do list focusing on Ajax and JavaScript effects. Students reported
the most hours spent on this assignment but also one of the
highest enjoyment ratings. Several students attached comments
saying that they enjoyed customizing its look and behavior.

0

1

2

3

4

5

6

7

8

9

H
T
M

L/
C

S
S

La
y

o
u

t

Ja
v
a

S
c

ri
p

t

JS
 D

O
M

A
ja

x
/X

M
L

W
e

b
 2

.0

P
H

P
/F

o
rm

s

P
H

P
/S

Q
L

Topic

H
o

u
rs

Hours Spent

Figure 3. Homework Hours Spent Survey Data

We were encouraged to find that web programming makes it
easy to incorporate student creativity into assignments. The
languages involved make it simple to add pizzazz to a page
without greatly increasing the difficulty or making the programs
hard to grade. Students reported that they were excited that with
only a few weeks of learning they could already create web sites
that were near "professional quality." It is difficult to reach such a
level in most early courses; this makes web programming a
powerful vehicle for motivating interest in computer science.

The end-of-quarter course evaluation data shows that the
course was very popular. High course ratings alone are not
always compelling, but we note two particular numbers. First is
the course's Challenge and Engagement Index (CEI) ranking of 6,
indicating that the course was of above-average difficulty
compared to other university/CS courses. The second is the low
difference between average outside-of-class hours spent per week
(9.0) and the number of those hours students perceived as being
valuable to their education (8.6). These factors imply that though
the students found the course challenging, they enjoyed it and
considered almost all work in the course to be relevant and useful.

Table 3. Student Evaluation Data
(5-point scale unless otherwise specified)

Category 2007 2008

Course as a whole 4.7 5.0
Course content 4.5 5.0

Relevance and usefulness of content 4.7 4.9
Amount learned 4.7 4.9

Challenge/engagement (10-pt scale) 7 6
Hours spent on coursework per week 9.4 9.0

Valuable hours spent 7.5 8.6

5. ANALYSIS AND CONCLUSIONS
We feel that the data supports the claim that the course

offering was a success. As mentioned previously, students were
pleased with the course despite its high difficulty level and "work

in progress" nature. Another relevant fact is that the course
currently counts for no credit toward any degree program; it
counts only as general elective credit, essentially worthless to
students for degree progress. That over 200 students voluntarily
enrolled in such a course for no academic reward speaks to the
strong student desire to see this material incorporated into the CS
curriculum. Anecdotally, many students expressed a sadness that
the course was ending and wished there were a follow-up course
covering more advanced web concepts and larger projects. UW is
in the progress of undergrad curriculum revision, and we consider
such a second web course to be an area for future exploration.

A piece of feedback we received repeatedly was a sense of
excitement about the course material. Simply put, students really
want to learn this stuff. Web programming delivers a rich
multimedia experience that brings rewarding results. The material
is relevant to students, who share their work with friends, post it
on Facebook and MySpace, and add it to their web sites. Web
programming is interdisciplinary: Based on our data and
feedback, its topics are more relevant to many non-CS majors than
CS2's. Despite its reputation in some circles, web programming is
conceptually deep; it gives a simple way to learn event-driven
programming, to become conversant in many languages, learn the
client-server paradigm, interact with databases, and more.

Having CS1 as a prerequisite freed us to cover new language
syntax more quickly and therefore to solve more interesting
problems. But it raises the question: Why not move web
programming even later in the curriculum and write more
elaborate programs? We have two counter-arguments. One is
that non-majors formed the core of our large audience, and they
would be unable to take the course if it had additional
prerequisites. The other is that from our grade analysis, CS
majors did well despite being asked to complete more difficult
assignments. This suggests to us that the material is in the right
place and would be too easy for junior-level students.

Another unexpected side effect of offering the web course
just after CS1 is an increase in interest in CS2. This fall we see a
40-student (18%) increase in first-day CS2 enrollment, which we
partially attribute to the web course's popularity. Without
substantive data, our best hypothesis is that there is a large subset
of students who enjoy our CS1 course but are intimidated away
from taking our CS2 after hearing about its high degree of
difficulty. We believe (and have heard anecdotally) that taking
the web programming course gives these students another term to
sharpen their programming skills and gain overall maturity as
software developers before undertaking the challenge of CS2.
This emboldens students who would otherwise avoid the course
entirely, helping to bring additional students into our major. (This
is a nice benefit of offering well-run service courses in general.)

6. FUTURE WORK
UW's web programming course will be offered in Spring

2009, again as an elective that fulfills no CS major requirements.
We believe this provides some unintended benefits. It allows the
course to fly in under the radar and not be subject to design and
destruction by committee. It leads to a degree of self-selection,
where the majority of the students in the course are there
voluntarily because they want to learn the material. This
promotes a positive and energetic classroom atmosphere. Also,

the material and course are so exciting to students that they are
willing to take it without receiving any additional reward.

We are currently collaborating with other departments such
as our Informatics School to potentially allow the course to be
cross-listed and to fulfill degree requirements for those
departments. Cross-department interest exists for a course such as
this one and helps the survival and longevity of the course.

We plan to add a weekly 50-minute TA-led discussion
section to the course to match our CS1 and CS2 courses. We find
that sections are immensely valuable for reinforcing the material
taught in lecture. The discussions also increase TAs' feelings of
ownership and investment in the course, which was a minor
problem for us in past offerings. We are also developing course
resources such as comprehensive lecture notes, lab exercises,
discussion section handouts, video screencasts of our lectures, and
a textbook. These resources will be available to other instructors.
We hope to help encourage the mass adoption of introductory web
programming into CS programs at this level. Our current course
materials can be found at the following address:

• http://www.cs.washington.edu/190m/

7. ACKNOWLEDGMENTS
Our thanks to the SIGCSE 2007 web programming BoF

attendees for their valuable insights and experiences.

8. REFERENCES
[1] Decker, A., Ventura, P., Egert, C. Through the looking

glass: reflections on using undergraduate teaching assistants
in CS1. SIGCSE Bulletin, 38(1): 46-50, 2006.

[2] Gousie, M. A robust web programming and graphics course
for non-majors. SIGCSE Bulletin, 38(1): 72-76, 2006.

[3] Jackson, J. Web Technologies: A Computer Science
Perspective. Prentice Hall, 2006.

[4] Noonan, R. A course in web programming. Journal of
Computing Sciences in Colleges, 22(3): 23-28, 2007.

[5] Reed, D. Rethinking CS0 with JavaScript. SIGCSE
Bulletin, 33(1): 100-104, 2001.

[6] Reges, S. Using undergraduates as teaching assistants at a
state university. SIGCSE Bulletin, 35(1): 103-107, 2003.

[7] Roberts, E., Lilly, J., Rollins, B. Using undergraduates as
teaching assistants in introductory programming courses: an
update on the Stanford experience. SIGCSE Bulletin, 27(1):
48-52, 1995.

[8] Sebesta, R. Programming the World Wide Web (4th
Edition). Addison Wesley, 2007.

[9] Stepp, M., Miller, J. Web programming in the curriculum.
SIGCSE Bulletin, 40(1): 564, 2008.

[10] Yue, K., Ding, W. Design and evolution of an
undergraduate course on web application development.
SIGCSE Bulletin, 36(3): 22-26, 2004.

[11] Zimmermann, B. Content and laboratories of a computing
science course for non-majors in the 21st century. Journal of
Computing Sciences in Colleges, 19(5): 68–77, 2004.

