Web Programming Step by Step

Lecture 27
Object-Oriented JavaScript

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

~ XHTML r
« 1.1 %u cssé

Lecture Outline

e Motivation for objects

e Creating custom objects

e Object prototypes and "classes"

e Pseudo-inheritance using prototypes

e The Prototype framework's features for classes and inheritance

Why use classes and objects?

e small programs are easily written without objects
e JavaScript treats functions as first-class citizens
e larger programs become cluttered with disorganized
functions
e objects group related data and behavior
o helps manage size and complexity, promotes
code reuse
® You have already #sed many types of JavaScript objects
o Strings, arrays, HTML / XML DOM nodes
o Prototype Ajax.Request, Scriptaculous
Effect / Sortable / Draggable

state
(fields)

Creating a new anonymous object

var hame = {
fieldName: value,

fieldName: value
i JS

var pt = {
x: 4,

y: 3
}i
alert(pt.x + ", " + pt.y); JS

e in JavaScript, you can create a new object without creating a class

e the above is like a Point object; it has fields named x and y

e the object does not belong to any class; it is the only one of its kind
o typeof (pt) === "object"

You've already done this...

new Ajax.Request ("http://example.com/app.php",
{
method: "get", // an object with a field named method (String
onSuccess: ajaxSuccess // and a method named onSuccess
}
)

$("my element".fade (
{

duration: 2.0, // an object with 3 fields named:
from: 1.0, // duration, from, and to (Number)
to: 0.5

}
) JS

e the parameters in { } passed to Prototype/Scriptaculous were actually anonymous objects

Objects that have behavior (functions/methods)

var hame = {

methodName: function (parameters) {
statements;

}
b & JS

var pt = {
x: 4, y: 3,
distanceFromOrigin: function() ({
return Math.sqrt(this.x * this.x + this.y * this.y);
}
bi

alert (pt.distanceFromOrigin ()) ; // 5 S

e like in Java, objects' methods run "inside" that object
o inside an object's method, the object refers to itself as this
o unlike in Java, the this keyword is mandatory in JS

A poor attempt at a "constructor”

What if we want to create an entire new class, not just one object?

e JavaScript, unlike Java, does NOT have classes
e we could emulate the functionality of a constructor with a function:

// Creates and returns a new Point object. (This is bad code.)
function constructPoint (xValue, yValue) ({

var pt = {
x: xValue, y: yValue,
distanceFromOrigin: function() {

return Math.sqgrt (this.x * this.x + this.y * this.y;
}
bi
return pt;

}

\var p = constructPoint (4, -3);

@

e the above code is ugly and doesn't match the new syntax we're used to
gly Yy

Constructor functions

// Constructs and returns a new Point object.
function Point (xValue, yValue) ({
this.x = xValue;
this.y = yValue;
this.distanceFromOrigin = function() {
return Math.sqgrt (this.x * this.x + this.y * this.y);

b g

}

e
n

\var p = new Point (4, -3);

e a constructor is just a normal function

e when any function called with new, JavaScript does the following:
o creates a new empty anonymous object and uses it as this within the function
o implicitly returns the new object at the end of the function

e what happens if our "constructor" is called as a normal function, without new?

var p = Point(4, -3);

Problems with our constructor

// Constructs and returns a new Point object.
function Point (xValue, yValue) {
this.x = xValue;
this.y yValue;
this.distanceFromOrigin = function() {
return Math.sqrt(this.x * this.x + this.y * this.y);
};

JS

e ugly syntax; every method must be declared inside the constructor
e (subtle) replicates the methods in every object (wasteful)

o every Point object has its own entire copy of the distanceFromOrigin code

A paradigm shift: prototypes

e prototype: an ancestor of a JavaScript object

o like a "super-object" instead of a superclass
o a parent at the object level rather than at the
class level

Objectd

_proto__ [

prop4:

o not to be confused with Prototype
tramework
e cvery object contains a reference to its prototype Ohbjecti
o the defaultis Object.prototype
o strings use String.prototype, etc. S
o a prototype can have a prototype, and so on fnt:
e an object "inherits" all methods/data from its
prototype(s)
o it doesn't have to make a copy of them, which saves memory
e prototypes allow JavaScript to mimic classes and inheritance

__proto__: |

Object2

__proto:

prop2:
fn2:

Objectd

__proto__
prop3:
fn2:

fnd:

An object's prototype chain

\ol pc: HT\.' . Prh-l'o‘\'\-spe, 1 QLSQ,&{'.,omLa'!'\\Pe

X | 3 ! A\Shncc,[:m()nﬁm ‘I"?‘:L
4 l\ l

- # =

-“P“’*"“G &;&’ﬁ:“f—J_:’? “f""’h'*'@

— "

e when you try to look up a property or method in an object, JavaScript:
1. Sees if the object itself contains that property/method.
2. If not, recursively checks the object's prototype to see if it has the property/method.
3. Continues up the "prototype chain" until it finds the property/method or gives up
with undefined.

Constructors and prototypes

// also causes Point.prototype to become defined
function Point (xValue, yValue) {

}

e cvery constructor also has an associated prototype object
o example: when we define our Point constructor, that creates a
Point.prototype
o initially this object has nothing in it
e cvery object you construct will use the constructor's prototype object as its prototype
o example: every constructed Point object will use Point.prototype
e (revised) when any function called with new, JavaScript does the following:
O creates a new empty anonymous object
o attaches the function's prototype object to the new object as its prototype
o runs the constructor's code, using the new object as this
o implicitly returns the new object at the end of the function

Modifying a prototype

// adding a method to the prototype
className .prototype.methodName = function (parameters) ({
statements;
} JS

Point.prototype.distanceFromOrigin = function() {
return Math.sgrt(this.x * this.x + this.y * this.y);
}; JS

e adding a method/field to a prototype will give it to all objects using that prototype
o better than manually adding each method to each object (copying the method N
times)
e we generally put only methods and constant data (not fields!) in a prototype object
o what would happen if we put the x and y fields in Point.prototype?
e FExercise:. Add distance and toString methods.

Point prototype methods

// Computes the distance between this point and the given point p.
Point.prototype.distance = function (p) {

var dx = this.x - p.x;

var dy = this.y - p.y;

return Math.sgrt(dx * dx + dy * dy);
i

// Returns a text representation of this object, such as " (3, -4)".
Point.prototype.toString = function() {

return " (" + this.x + ", " + this.y + ")";
}; JS

e our Point code could be saved into a file Point. js
e the toString method works similarly as in Java

Modifying built-in prototypes

// add a 'contains' method to all String objects
String.prototype.contains = function(text) {
return this.indexOf (text) >= 0;

b 8

// add a 'lightUp' method to all HTML DOM element objects

HTMLElement.prototype.lightUp = function() {
this.style.backgroundColor = "yellow";
this.style.fontWeight = "bold";

iy

()}

e ANY prototype can be modified, including those of existing types
o Prototype and other libraries do this
0 not quite the same as adding something to a single object

o Fxercise: Add a reverse method to strings.

o Fxercise: Add a shuf fle method to arrays.

Pseudo-inheritance with prototypes

function SuperClassName (parameters) ({ // "superclass" constructor

S
n

'y

function SubClassName (parameters) { // "subclass" constructor

};... o

n

n

SubClassName .prototype = new SuperClassName (parameters) ; // connect them

e to make a "subclass", tell its constructor to use a "superclass" object as its prototype
e why not just write it this way?

L
n

SubClassName .prototype = SuperClassName .prototype; // connect them

Pseudo-inheritance example

// Constructor for Point3D "class"
function Point3D(x, vy, z) {
this.x = x;

this.y = y;
this.z = z;
i
Point3D.prototype = new Point (0, O); // set as "subclass" of Point

// override distanceFromOrigin method
Point3D.prototype.distanceFromOrigin = function() {

return Math.sgrt(this.x * this.x + this.y * this.y + this.z * this.z);
i JS

e mostly works fine, but there no equivalent of the super keyword
® no built-in way to call an overridden method
® 1o casy way to call the superclass's constructor

Classes and prototypes

e limitations of prototype-based code:
o unfamiliar / confusing to many programmers
o somewhat unpleasant syntax
o difficult to get inheritance-like semantics (subclassing, overriding methods)

e Prototype library's Class . create method makes a new class of objects
o essentially the same as using prototypes, but uses a more familiar style and allows for
richer inheritance semantics

Creating a class

className = Class.create ({
// constructor

initialize : function (parameters) {
this.fieldName = value;

by

methodName : function (parameters) {
statements;
I

}); JE

e constructor is written as a special initialize function

Class.create example

Point = Class.create ({
// Constructs a new Point object at the given initial coordinates.
initialize: function(initialX, initialY) {
this.x = initialX;
this.y initialY;
by

// Computes the distance between this Point and the given Point p.
distance: function(p) {

var dx = this.x - p.x;

var dy = this.y - p.y;

return Math.sqgrt(dx * dx + dy * dy);
by

// Returns a text representation of this Point object.

toString: function() {
return " (" + this.x + ", " + this.y + ")";
}
}) s JS|
Inheritance
className = Class.create (superclass, {
Do i

// Points that use "Manhattan" (non-diagonal) distances.
ManhattanPoint = Class.create (Point, {
// Computes the Manhattan distance between this Point and p.
// Overrides the distance method from Point.
distance: function(p) {

var dx = Math.abs(this.x - p.x);

var dy = Math.abs(this.y - p.vy):

return dx + dy;
b

// Computes this point's Manhattan Distance from the origin.
distanceFromOrigin: function() {
return this.x + this.y;

}
}); JS|

Referring to superclass: $super

name: function ($super, parameters) {
statements;

} JS
ManhattanPoint3D = Class.create (ManhattanPoint, {
initialize: function ($super, initialX, initialY, initialZ) {
$super (initialX, initialY); // call Point constructor
this.z = initialZz;
bo
// Returns 3D "Manhattan Distance" from p.
distance: function ($super, p) {
var dz = Math.abs(this.z - p.z);
return $super (p) + dz;
}I
. JS

}) i

e can refer to superclass's overridden method as Ssuper in code

