
Web Programming Step by Step
Lecture 27

Object-Oriented JavaScript

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

Lecture Outline

Motivation for objects
Creating custom objects
Object prototypes and "classes"
Pseudo-inheritance using prototypes
The Prototype framework's features for classes and inheritance

Why use classes and objects?

small programs are easily written without objects
JavaScript treats functions as first-class citizens
larger programs become cluttered with disorganized
functions
objects group related data and behavior

helps manage size and complexity, promotes
code reuse

You have already used many types of JavaScript objects
Strings, arrays, HTML / XML DOM nodes
Prototype Ajax.Request, Scriptaculous
Effect / Sortable / Draggable

Creating a new anonymous object

var name = {

 fieldName: value,
 ...

 fieldName: value
};

var pt = {
 x: 4,
 y: 3
};
alert(pt.x + ", " + pt.y);

in JavaScript, you can create a new object without creating a class
the above is like a Point object; it has fields named x and y
the object does not belong to any class; it is the only one of its kind

typeof(pt) === "object"

You've already done this...

new Ajax.Request("http://example.com/app.php",
 {
 method: "get", // an object with a field named method (String)
 onSuccess: ajaxSuccess // and a method named onSuccess
 }
);

$("my_element".fade(
 {
 duration: 2.0, // an object with 3 fields named:
 from: 1.0, // duration, from, and to (Number)
 to: 0.5
 }
);

the parameters in {} passed to Prototype/Scriptaculous were actually anonymous objects

Objects that have behavior (functions/methods)

var name = {
 ...

 methodName: function(parameters) {

 statements;
 }
};

var pt = {
 x: 4, y: 3,
 distanceFromOrigin: function() {
 return Math.sqrt(this.x * this.x + this.y * this.y);
 }
};

alert(pt.distanceFromOrigin()); // 5

like in Java, objects' methods run "inside" that object
inside an object's method, the object refers to itself as this
unlike in Java, the this keyword is mandatory in JS

A poor attempt at a "constructor"

What if we want to create an entire new class, not just one object?

JavaScript, unlike Java, does NOT have classes
we could emulate the functionality of a constructor with a function:

// Creates and returns a new Point object. (This is bad code.)
function constructPoint(xValue, yValue) {
 var pt = {
 x: xValue, y: yValue,
 distanceFromOrigin: function() {
 return Math.sqrt(this.x * this.x + this.y * this.y;
 }
 };
 return pt;
}

var p = constructPoint(4, -3);

the above code is ugly and doesn't match the new syntax we're used to

Constructor functions

// Constructs and returns a new Point object.
function Point(xValue, yValue) {
 this.x = xValue;
 this.y = yValue;
 this.distanceFromOrigin = function() {
 return Math.sqrt(this.x * this.x + this.y * this.y);
 };
}

var p = new Point(4, -3);

a constructor is just a normal function
when any function called with new, JavaScript does the following:

creates a new empty anonymous object and uses it as this within the function
implicitly returns the new object at the end of the function

what happens if our "constructor" is called as a normal function, without new?

var p = Point(4, -3);

Problems with our constructor

// Constructs and returns a new Point object.
function Point(xValue, yValue) {
 this.x = xValue;
 this.y = yValue;
 this.distanceFromOrigin = function() {
 return Math.sqrt(this.x * this.x + this.y * this.y);
 };
}

ugly syntax; every method must be declared inside the constructor
(subtle) replicates the methods in every object (wasteful)

every Point object has its own entire copy of the distanceFromOrigin code

A paradigm shift: prototypes

prototype: an ancestor of a JavaScript object
like a "super-object" instead of a superclass
a parent at the object level rather than at the
class level
not to be confused with Prototype
framework

every object contains a reference to its prototype
the default is Object.prototype
strings use String.prototype, etc.
a prototype can have a prototype, and so on

an object "inherits" all methods/data from its
prototype(s)

it doesn't have to make a copy of them, which saves memory
prototypes allow JavaScript to mimic classes and inheritance

An object's prototype chain

when you try to look up a property or method in an object, JavaScript:
Sees if the object itself contains that property/method.1.
If not, recursively checks the object's prototype to see if it has the property/method.2.
Continues up the "prototype chain" until it finds the property/method or gives up
with undefined.

3.

Constructors and prototypes

// also causes Point.prototype to become defined
function Point(xValue, yValue) {
 ...
}

every constructor also has an associated prototype object
example: when we define our Point constructor, that creates a
Point.prototype
initially this object has nothing in it

every object you construct will use the constructor's prototype object as its prototype
example: every constructed Point object will use Point.prototype

(revised) when any function called with new, JavaScript does the following:
creates a new empty anonymous object
attaches the function's prototype object to the new object as its prototype
runs the constructor's code, using the new object as this
implicitly returns the new object at the end of the function

Modifying a prototype

// adding a method to the prototype

className.prototype.methodName = function(parameters) {

 statements;
}

Point.prototype.distanceFromOrigin = function() {
 return Math.sqrt(this.x * this.x + this.y * this.y);
};

adding a method/field to a prototype will give it to all objects using that prototype
better than manually adding each method to each object (copying the method N
times)

we generally put only methods and constant data (not fields!) in a prototype object
what would happen if we put the x and y fields in Point.prototype?

Exercise: Add distance and toString methods.

Point prototype methods

// Computes the distance between this point and the given point p.
Point.prototype.distance = function(p) {
 var dx = this.x - p.x;
 var dy = this.y - p.y;
 return Math.sqrt(dx * dx + dy * dy);
};

// Returns a text representation of this object, such as "(3, -4)".
Point.prototype.toString = function() {
 return "(" + this.x + ", " + this.y + ")";
};

our Point code could be saved into a file Point.js
the toString method works similarly as in Java

Modifying built-in prototypes

// add a 'contains' method to all String objects
String.prototype.contains = function(text) {
 return this.indexOf(text) >= 0;
};

// add a 'lightUp' method to all HTML DOM element objects
HTMLElement.prototype.lightUp = function() {
 this.style.backgroundColor = "yellow";
 this.style.fontWeight = "bold";
};

ANY prototype can be modified, including those of existing types
Prototype and other libraries do this
not quite the same as adding something to a single object

Exercise: Add a reverse method to strings.
Exercise: Add a shuffle method to arrays.

Pseudo-inheritance with prototypes

function SuperClassName(parameters) { // "superclass" constructor
 ...
};

function SubClassName(parameters) { // "subclass" constructor
 ...
};

SubClassName.prototype = new SuperClassName(parameters); // connect them

to make a "subclass", tell its constructor to use a "superclass" object as its prototype
why not just write it this way?

SubClassName.prototype = SuperClassName.prototype; // connect them

Pseudo-inheritance example

// Constructor for Point3D "class"
function Point3D(x, y, z) {
 this.x = x;
 this.y = y;
 this.z = z;
};

Point3D.prototype = new Point(0, 0); // set as "subclass" of Point

// override distanceFromOrigin method
Point3D.prototype.distanceFromOrigin = function() {
 return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
};

mostly works fine, but there no equivalent of the super keyword
no built-in way to call an overridden method
no easy way to call the superclass's constructor

Classes and prototypes

limitations of prototype-based code:
unfamiliar / confusing to many programmers
somewhat unpleasant syntax
difficult to get inheritance-like semantics (subclassing, overriding methods)

Prototype library's Class.create method makes a new class of objects
essentially the same as using prototypes, but uses a more familiar style and allows for
richer inheritance semantics

Creating a class

className = Class.create({
 // constructor

 initialize : function(parameters) {

 this.fieldName = value;
 ...
 },

 methodName : function(parameters) {

 statements;
 },
 ...
});

constructor is written as a special initialize function

Class.create example

Point = Class.create({
 // Constructs a new Point object at the given initial coordinates.
 initialize: function(initialX, initialY) {
 this.x = initialX;
 this.y = initialY;
 },

 // Computes the distance between this Point and the given Point p.
 distance: function(p) {
 var dx = this.x - p.x;
 var dy = this.y - p.y;
 return Math.sqrt(dx * dx + dy * dy);
 },

 // Returns a text representation of this Point object.
 toString: function() {
 return "(" + this.x + ", " + this.y + ")";
 }
});

Inheritance

className = Class.create(superclass, {
 ...
});

// Points that use "Manhattan" (non-diagonal) distances.
ManhattanPoint = Class.create(Point, {
 // Computes the Manhattan distance between this Point and p.
 // Overrides the distance method from Point.
 distance: function(p) {
 var dx = Math.abs(this.x - p.x);
 var dy = Math.abs(this.y - p.y);
 return dx + dy;
 },

 // Computes this point's Manhattan Distance from the origin.
 distanceFromOrigin: function() {
 return this.x + this.y;
 }
});

Referring to superclass: $super

name: function($super, parameters) {

 statements;
}

ManhattanPoint3D = Class.create(ManhattanPoint, {
 initialize: function($super, initialX, initialY, initialZ) {
 $super(initialX, initialY); // call Point constructor
 this.z = initialZ;
 },

 // Returns 3D "Manhattan Distance" from p.
 distance: function($super, p) {
 var dz = Math.abs(this.z - p.z);
 return $super(p) + dz;
 },
});

can refer to superclass's overridden method as $super in code

