
Web Programming Step by Step
Lecture 24

SQL Joins
Reading: 11.4 - 11.5; Appendix A

References: SQL syntax reference, w3schools tutorial

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

Appendix A: Database Design

11.1: Database Basics
11.2: SQL
11.3: Databases and PHP
Appendix A: Database Design

11.4: Multi-table Queries

Database design principles (Appendix A)

database design : the act of deciding the schema for a database
database schema: a description of what tables a database should have, what columns each
table should contain, which columns' values must be unique, etc.
some database design principles:

keep it simple, stupid (KISS)
provide an identifier by which any row can be uniquely fetched
eliminate redundancy, especially of lengthy data (strings)

integers are smaller than strings and better to repeat
favor integer data for comparisons and repeated values

integers are smaller than strings and better to repeat
integers can be compared/searched more quickly than strings, real numbers

First database design

student_grades

name email course grade

Bart bart@fox.com Computer Science 142 B-

Bart bart@fox.com Computer Science 143 C

Milhouse milhouse@fox.com Computer Science 142 B+

Lisa lisa@fox.com Computer Science 143 A+

Lisa lisa@fox.com Computer Science 190M A+

Ralph ralph@fox.com Informatics 100 D+

what's good and bad about this design?
good: simple (one table), can see all data in one place
bad: redundancy (name, email, course repeated frequently)
bad: most searches (e.g. find a student's courses) will have to rely on string
comparisons
bad: there is no single column whose value will be unique in each row

Second database design

students

id name email

123 Bart bart@fox.com

456 Milhouse milhouse@fox.com

888 Lisa lisa@fox.com

404 Ralph ralph@fox.com

courses

id name

10001 Computer Science 142

10002 Computer Science 143

10003 Computer Science 190M

10004 Informatics 100

grades

student_id course_id grade

123 10001 B-

123 10002 C

456 10001 B+

888 10002 A+

888 10003 A+

404 10004 D+

splitting data into multiple tables avoids redundancy
normalizing: splitting tables to improve structure and remove redundancy / anomalies
normalized tables are often linked by unique integer IDs

Related tables and keys

students

id name email

123 Bart bart@fox.com

456 Milhouse milhouse@fox.com

888 Lisa lisa@fox.com

404 Ralph ralph@fox.com

courses

id name

10001 Computer Science 142

10002 Computer Science 143

10003 Computer Science 190M

10004 Informatics 100

grades

student_id course_id grade

123 10001 B-

123 10002 C

456 10001 B+

888 10002 A+

888 10003 A+

404 10004 D+

primary key: a table column guaranteed to be unique for each record
record in Student table with id of 888 is Lisa Simpson's student info

records of one table may be associated with record(s) in another table
foreign key: a column in table A that stores a value of a primary key from another table B

records in Grade table with student_id of 888 are Lisa Simpson's course grades

Design question

students

id name email

123 Bart bart@fox.com

456 Milhouse milhouse@fox.com

888 Lisa lisa@fox.com

404 Ralph ralph@fox.com

courses

id name

10001 Computer Science 142

10002 Computer Science 143

10003 Computer Science 190M

10004 Informatics 100

grades

student_id course_id grade

123 10001 B-

123 10002 C

456 10001 B+

888 10002 A+

888 10003 A+

404 10004 D+

suppose we want to keep track of the teachers who teach each course
e.g. Ms. Krabappel always teaches CSE 142 and INFO 100
e.g. Ms. Hoover always teaches CSE 143
e.g. Mr. Stepp always teaches CSE 190M

what tables and/or columns should we add to the database?

Design answer

teachers

id name

1234 Krabappel

5678 Hoover

9012 Stepp

courses

id name teacher_id

10001 Computer Science 142 1234

10002 Computer Science 143 5678

10003 Computer Science 190M 9012

10004 Informatics 100 1234

add a teachers table containing information about instructors
link this to courses by teacher IDs
why not just skip the teachers table and put the teacher's name as a column in
courses?

repeated teacher names are redundant and large in size

11.4: Multi-table Queries

11.1: Database Basics
11.2: SQL
11.3: Databases and PHP
11.4: Multi-table Queries

Example simpsons database

students

id name email

123 Bart bart@fox.com

456 Milhouse milhouse@fox.com

888 Lisa lisa@fox.com

404 Ralph ralph@fox.com

teachers

id name

1234 Krabappel

5678 Hoover

9012 Stepp

courses

id name teacher_id

10001
Computer
Science 142

1234

10002
Computer
Science 143

5678

10003
Computer
Science 190M

9012

10004
Informatics
100

1234

grades

student_id course_id grade

123 10001 B-

123 10002 C

456 10001 B+

888 10002 A+

888 10003 A+

404 10004 D+

Querying multi-table databases

When we have larger datasets spread across multiple tables, we need queries that can answer
high-level questions such as:

What courses has Bart taken and gotten a B- or better?
What courses have been taken by both Bart and Lisa?
Who are all the teachers Bart has had?
How many total students has Ms. Krabappel taught, and what are their names?

To do this, we'll have to join data from several tables in our SQL queries.

Cross product with JOIN (11.4.1)

SELECT column(s) FROM table1 JOIN table2;

SELECT * FROM students JOIN grades;

id name email student_id course_id grade

123 Bart bart@fox.com 123 10001 B-

404 Ralph ralph@fox.com 123 10001 B-

456 Milhouse milhouse@fox.com 123 10001 B-

888 Lisa lisa@fox.com 123 10001 B-

123 Bart bart@fox.com 123 10002 C

404 Ralph ralph@fox.com 123 10002 C

... (24 rows returned)

cross product or Cartesian product: combines each row of first table with each row of
second

produces M * N rows, where table 1 has M rows and table 2 has N
problem: produces too much irrelevant/meaningless data

Joining with ON clauses (11.4.2)

SELECT column(s)

FROM table1

 JOIN table2 ON condition(s)
 ...

 JOIN tableN ON condition(s);

SELECT *
FROM students
 JOIN grades ON id = student_id;

join: a relational database operation that combines records from two or more tables if they
satisfy certain conditions
the ON clause specifies which records from each table are matched
often the rows are linked by their key columns

Join example

SELECT *
FROM students
 JOIN grades ON id = student_id;

id name email student_id course_id grade

123 Bart bart@fox.com 123 10001 B-

123 Bart bart@fox.com 123 10002 C

404 Ralph ralph@fox.com 404 10004 D+

456 Milhouse milhouse@fox.com 456 10001 B+

888 Lisa lisa@fox.com 888 10002 A+

888 Lisa lisa@fox.com 888 10003 A+

table.column can be used to disambiguate column names:

SELECT *
FROM students
 JOIN grades ON students.id = grades.student_id;

Filtering columns in a join

SELECT name, course_id, grade
FROM students
 JOIN grades ON students.id = student_id;

name course_id grade

Bart 10001 B-

Bart 10002 C

Ralph 10004 D+

Milhouse 10001 B+

Lisa 10002 A+

Lisa 10003 A+

if a column exists in multiple tables, it may be written as table.column

Giving names to tables

SELECT name, g.*
FROM students s
 JOIN grades g ON s.id = g.student_id;

name student_id course_id grade

Bart 123 10001 B-

Bart 123 10002 C

Ralph 404 10004 D+

Milhouse 456 10001 B+

Lisa 888 10002 A+

Lisa 888 10003 A+

can give names to tables, like a variable name in Java
to specify all columns from a table, write table.*

Filtered join (JOIN with WHERE) (11.4.3)

SELECT name, course_id, grade
FROM students s
 JOIN grades g ON s.id = g.student_id
WHERE s.id = 123;

name course_id grade

Bart 10001 B-

Bart 10002 C

FROM / JOIN glue the proper tables together, and WHERE filters the results
what goes in the ON clause, and what goes in WHERE?

ON directly links columns of the joined tables
WHERE sets additional constraints such as particular values (123, 'Bart')

Multi-way join

SELECT c.name
FROM courses c
 JOIN grades g ON g.course_id = c.id
 JOIN students bart ON g.student_id = bart.id
WHERE bart.name = 'Bart' AND g.grade <= 'B-';

name

Computer Science 142

grade column sorts alphabetically, so grades better than B- are ones <= it

A suboptimal query

What courses have been taken by both Bart and Lisa?

SELECT bart.course_id
FROM grades bart
 JOIN grades lisa ON lisa.course_id = bart.course_id
WHERE bart.student_id = 123
 AND lisa.student_id = 888;

problem: requires us to know Bart/Lisa's Student IDs, and only spits back course IDs, not
names.
Write a version of this query that gets us the course names, and only requires us to know
Bart/Lisa's names, not their IDs.

Improved query

What courses have been taken by both Bart and Lisa?

SELECT DISTINCT c.name
FROM courses c
 JOIN grades g1 ON g1.course_id = c.id
 JOIN students bart ON g1.student_id = bart.id
 JOIN grades g2 ON g2.course_id = c.id
 JOIN students lisa ON g2.student_id = lisa.id
WHERE bart.name = 'Bart'
 AND lisa.name = 'Lisa';

Practice queries

What are the names of all teachers Bart has had?

SELECT DISTINCT t.name
FROM teachers t
 JOIN courses c ON c.teacher_id = t.id
 JOIN grades g ON g.course_id = c.id
 JOIN students s ON s.id = g.student_id
WHERE s.name = 'Bart';

How many total students has Ms. Krabappel taught, and what are their names?

SELECT DISTINCT s.name
FROM students s
 JOIN grades g ON s.id = g.student_id
 JOIN courses c ON g.course_id = c.id
 JOIN teachers t ON t.id = c.teacher_id
WHERE t.name = 'Krabappel';

actors

id first_name last_name gender

433259 William Shatner M

797926 Britney Spears F

831289 Sigourney Weaver F

...

movies

id name year rank

112290 Fight Club 1999 8.5

209658 Meet the Parents 2000 7

210511 Memento 2000 8.7

...

roles

actor_id movie_id role

433259 313398 Capt. James T. Kirk

433259 407323 Sgt. T.J. Hooker

797926 342189 Herself

...

Example imdb database (11.1.2)

also available, imdb_small with fewer records (for testing queries)
other tables:

directors (id, first_name, last_name)
movies_directors (director_id, movie_id)
movies_genres (movie_id, genre)

IMDb query example

[stepp@webster ~]$ mysql -u myusername -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> use imdb_small;
Database changed

mysql> select * from actors where first_name like '%mick%';
+--------+------------+-----------+--------+
| id | first_name | last_name | gender |
+--------+------------+-----------+--------+
71699	Mickey	Cantwell	M
115652	Mickey	Dee	M
470693	Mick	Theo	M
716748	Mickie	McGowan	F
+--------+------------+-----------+--------+
4 rows in set (0.01 sec)

IMDb table relationships / ids (11.4.3)

Designing a query (11.4.4)

Figure out the proper SQL queries in the following way:
Which table(s) contain the critical data? (FROM)
Which columns do I need in the result set? (SELECT)
How are tables connected (JOIN) and values filtered (WHERE)?

Test on a small data set (imdb_small).
Confirm on the real data set (imdb).
Try out the queries first in the MySQL console.
Write the PHP code to run those same queries.

Make sure to check for SQL errors at every step!!

