
Web Programming Step by Step
Lecture 13

Introduction to JavaScript
Reading: 7.1 - 7.4

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

Client-side scripting (7.1.1)

client-side script: code runs in browser after page is sent back from server
often this code manipulates the page or responds to user actions

Why use client-side programming?

PHP already allows us to create dynamic web pages. Why also use client-side scripting?

client-side scripting (JavaScript) benefits:
usability: can modify a page without having to post back to the server (faster UI)
efficiency: can make small, quick changes to page without waiting for server
event-driven: can respond to user actions like clicks and key presses

server-side programming (PHP) benefits:
security: has access to server's private data; client can't see source code
compatibility: not subject to browser compatibility issues
power: can write files, open connections to servers, connect to databases, ...

What is JavaScript? (7.1)

a lightweight programming language ("scripting language")
used to make web pages interactive

insert dynamic text into HTML (ex: user name)
react to events (ex: page load user click)
get information about a user's computer (ex: browser type)
perform calculations on user's computer (ex: form validation)

a web standard (but not supported identically by all browsers)
NOT related to Java other than by name and some syntactic similarities

 + =
JavaScript

JavaScript vs. Java

interpreted, not compiled
more relaxed syntax and rules

fewer and "looser" data types
variables don't need to be declared
errors often silent (few exceptions)

key construct is the function rather than the class
"first-class" functions are used in many
situations

contained within a web page and integrates with its HTML/CSS content

JS <3

JavaScript vs. PHP

similarities:
both are interpreted, not compiled
both are relaxed about syntax, rules, and types
both are case-sensitive
both have built-in regular expressions for powerful text
processing

differences:
JS is more object-oriented: noun.verb(), less procedural: verb(noun)
JS focuses on user interfaces and interacting with a document; PHP is geared toward
HTML output and file/form processing
JS code runs on the client's browser; PHP code runs on the web server

Linking to a JavaScript file: script

<script src="filename" type="text/javascript"></script>

<script src="example.js" type="text/javascript"></script>

script tag should be placed in HTML page's head
script code is stored in a separate .js file
JS code can be placed directly in the HTML file's body or head (like CSS)

but this is bad style (should separate content, presentation, and behavior)

A JavaScript statement: alert

alert("message");

alert("IE6 detected. Suck-mode enabled.");

a JS command that pops up a dialog box with a message

Variables and types (7.2.1, 7.2.3)

var name = expression;

var clientName = "Connie Client";

var age = 32;

var weight = 127.4;

variables are declared with the var keyword (case sensitive)
types are not specified, but JS does have types ("loosely typed")

Number, Boolean, String, Array, Object, Function, Null,
Undefined

can find out a variable's type by calling typeof

Number type (7.2.2)

var enrollment = 99;

var medianGrade = 2.8;

var credits = 5 + 4 + (2 * 3);

integers and real numbers are the same type (no int vs. double)
same operators: + - * / % ++ -- = += -= *= /= %=
similar precedence to Java
many operators auto-convert types: "2" * 3 is 6

HTML:
CSS/JS/PHP:
Java/JS/PHP:
PHP:

Comments (same as Java) (7.2.4)

// single-line comment

/* multi-line comment */

identical to Java's comment syntax
recall: 4 comment syntaxes

<!-- comment -->

/* comment */

// comment

comment

String type (7.2.7)

var s = "Connie Client";

var fName = s.substring(0, s.indexOf(" ")); // "Connie"
var len = s.length; // 13
var s2 = 'Melvin Merchant';

methods: charAt, charCodeAt, fromCharCode, indexOf, lastIndexOf,
replace, split, substring, toLowerCase, toUpperCase

charAt returns a one-letter String (there is no char type)
length property (not a method as in Java)
Strings can be specified with "" or ''
concatenation with + :

1 + 1 is 2, but "1" + 1 is "11"

More about String

escape sequences behave as in Java: \' \" \& \n \t \\
converting between numbers and Strings:

var count = 10;

var s1 = "" + count; // "10"
var s2 = count + " bananas, ah ah ah!"; // "10 bananas, ah ah ah!"
var n1 = parseInt("42 is the answer"); // 42
var n2 = parseFloat("booyah"); // NaN

accessing the letters of a String:

var firstLetter = s[0]; // fails in IE
var firstLetter = s.charAt(0); // does work in IE
var lastLetter = s.charAt(s.length - 1);

for loop (same as Java) (7.2.8)

for (initialization; condition; update) {

 statements;
}

var sum = 0;

for (var i = 0; i < 100; i++) {
 sum = sum + i;

}

var s1 = "hello";

var s2 = "";

for (var i = 0; i < s.length; i++) {
 s2 += s1.charAt(i) + s1.charAt(i);

}
// s2 stores "hheelllloo"

Math object (7.2.9)

var rand1to10 = Math.floor(Math.random() * 10 + 1);
var three = Math.floor(Math.PI);

methods: abs, ceil, cos, floor, log, max, min, pow, random, round, sin,
sqrt, tan
properties: E, PI

Special values: null and undefined (7.2.10)

var ned = null;

var benson = 9;

// at this point in the code,
// ned is null
// benson's 9
// caroline is undefined

undefined : has not been declared, does not exist
null : exists, but was specifically assigned an empty or null value
Why does JavaScript have both of these?

Logical operators (7.3.1, 7.3.4)

> < >= <= && || ! == != === !==

most logical operators automatically convert types:
5 < "7" is true
42 == 42.0 is true
"5.0" == 5 is true

=== and !== are strict equality tests; checks both type and value
"5.0" === 5 is false

if/else statement (same as Java) (7.3.2)

if (condition) {

 statements;

} else if (condition) {

 statements;
} else {

 statements;
}

identical structure to Java's if/else statement
JavaScript allows almost anything as a condition

Boolean type (7.3.3)

var iLike190M = true;

var ieIsGood = "IE6" > 0; // false
if ("web dev is great") { /* true */ }
if (0) { /* false */ }

any value can be used as a Boolean
"falsey" values: 0, 0.0, NaN, "", null, and
undefined

"truthy" values: anything else
converting a value into a Boolean explicitly:

var boolValue = Boolean(otherValue);

var boolValue = !!(otherValue);

while loops (same as Java) (7.3.5)

while (condition) {

 statements;
}

do {

 statements;

} while (condition);

break and continue keywords also behave as in Java

Popup boxes (7.4.4)

alert("message"); // message

confirm("message"); // returns true or false

prompt("message"); // returns user input string

Arrays (7.4.2)

var name = []; // empty array

var name = [value, value, ..., value]; // pre-filled

name[index] = value; // store element

var ducks = ["Huey", "Dewey", "Louie"];

var stooges = []; // stooges.length is 0
stooges[0] = "Larry"; // stooges.length is 1
stooges[1] = "Moe"; // stooges.length is 2
stooges[4] = "Curly"; // stooges.length is 5
stooges[4] = "Shemp"; // stooges.length is 5

two ways to initialize an array
length property (grows as needed when elements are added)

Array methods

var a = ["Stef", "Jason"]; // Stef, Jason
a.push("Brian"); // Stef, Jason, Brian
a.unshift("Kelly"); // Kelly, Stef, Jason, Brian
a.pop(); // Kelly, Stef, Jason
a.shift(); // Stef, Jason
a.sort(); // Jason, Stef

array serves as many data structures: list, queue, stack, ...
methods: concat, join, pop, push, reverse, shift, slice, sort, splice,
toString, unshift

push and pop add / remove from back
unshift and shift add / remove from front
shift and pop return the element that is removed

Splitting strings: split and join

var s = "the quick brown fox";

var a = s.split(" "); // ["the", "quick", "brown", "fox"]
a.reverse(); // ["fox", "brown", "quick", "the"]
s = a.join("!"); // "fox!brown!quick!the"

split breaks apart a string into an array using a delimiter
can also be used with regular expressions (seen later)

join merges an array into a single string, placing a delimiter between them

Event-driven JavaScript

7.2, 7.3

Event-driven programming

you are used to programs start with a main method (or implicit main like in PHP)
JavaScript programs instead wait for user actions called events and respond to them
event-driven programming: writing programs driven by user events
Let's write a page with a clickable button that pops up a "Hello, World" window...

Buttons: <button>

the canonical clickable UI control (inline)

<button>Click me!</button>

button's text appears inside tag; can also contain images
To make a responsive button or other UI control:

choose the control (e.g. button) and event (e.g. mouse click) of interest1.
write a JavaScript function to run when the event occurs2.
attach the function to the event on the control3.

JavaScript functions

function name() {

 statement ;

 statement ;
 ...

 statement ;
}

function myFunction() {

 alert("Hello!");

 alert("How are you?");

}

the above could be the contents of example.js linked to our HTML page
statements placed into functions can be evaluated in response to user events

Event handlers

<element attributes onclick="function();">...

<button onclick="myFunction();">Click me!</button>

JavaScript functions can be set as event handlers
when you interact with the element, the function will execute

onclick is just one of many event HTML attributes we'll use

but popping up an alert window is disruptive and annoying
A better user experience would be to have the message appear on the page...

Document Object Model (DOM) (7.1.4)

a set of JavaScript objects that represent each element on the page

most JS code manipulates elements on an HTML
page
we can examine elements' state

e.g. see whether a box is checked
we can change state

e.g. insert some new text into a div
we can change styles

e.g. make a paragraph red

DOM element objects (7.2.5)

every element on the page has a corresponding DOM object
access/modify the attributes of the DOM object with objectName.attributeName

Accessing elements: document.getElementById

var name = document.getElementById("id");

<button onclick="changeText();">Click me!</button>

replace me
<input id="textbox" type="text" />

function changeText() {

 var span = document.getElementById("output");
 var textBox = document.getElementById("textbox");
 textBox.value = span.innerHTML;
 span.innerHTML = "Hello, how are you?";
}

replace me

document.getElementById returns the DOM object for an element with a given
id

can change the text inside most elements by setting the innerHTML property
can change the text in form controls by setting the value property

