Web Programming Step by Step

Lecture 6

Introduction to PHP
Reading: 5.1 - 5.3

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp

and Jessica Miller.
~ XHTML r
%V cssé

4.4: Sizing and Positioning

e 4.1: Styling Page Sections

e 4.2: Introduction to Layout
e 4.3: Floating Elements

e 4.4: Sizing and Positioning

The display property (4.4.4)

nn
n

h2 { display: inline; background-color: yellow; } C

This is a heading This is another heading output

property description

display | sets the type of CSS box model an element is displayed with

e values: none, inline,block, run-in, compact, ...
e use sparingly, because it can radically alter the page layout

Displaying block elements as inline

<ul id="topmenu">
Ttem 1</1i>
Ttem 2</1i>
Ttem 3</1i>
 HTML

#topmenu 1i {
display: inline;
border: 2px solid gray;
margin-right: lem;
} CSS|

Item 1| |Item 2| |Item 3|

output

e lists and other block elements can be displayed inline
o flow left-to-right on same line
o width is determined by content (block elements are 100% of page width)

The visibility property

p.secret {
visibility: hidden;
}

property description

sets whether an element should be shown onscreen;

visibility can be visible (default) or hidden

e hidden elements will still take up space onscreen, but will not be shown
o to make it not take up any space, set display to none instead
e can be used to show/hide dynamic HTML content on the page in response to events

5.1: Server-Side Basics

e 5.1: Server-Side Basics

e 5.2: PHP Basic Syntax
¢ 5.3: Embedded PHP
® 5.4: Advanced PHP Syntax

URLs and web servers

http://server/path/file

e usually when you type a URL in your browser:
o your computer looks up the server's IP address using DNS
o your browser connects to that IP address and requests the given file
o the web server software (e.g. Apache) grabs that file from the server's local file system,
and sends back its contents to you

e some URLs actually specity programs that the web server should run, and then send their
output back to you as the result:

https://webster.cs.washington.edu/quote2.php

o the above URL tells the server webster.cs.washington.edu to run the
program quote?2 .php and send back its output

Server-Side web programming

e server-side pages are programs written using one of many web programming
languages/frameworks
o examples: PHP, Java/]JSP, Ruby on Rails, ASP.NET, Python, Perl
e the web server contains software that allows it to run those programs and send back their
output as responses to web requests
e cach language/framework has its pros and cons
o we use PHP for server-side programming in this textbook

What is PHP? (5.1.2)

e PHP stands for "PHP Hypertext Preprocessot”

e a server-side scripting language

e used to make web pages dynamic:
o provide different content depending on context
o interface with other services: database, e-mail, etc
o authenticate users
o process form information

e PHP code can be embedded in XHTML code

Lifecycle of a PHP web request (5.1.1)

Web Browser Web Server
GET PHP Script
http://example.com/hello.php P
hello.php » <?php
Hello world! include(’header.p

if (isset($_GET[’
page = $_GET[’p
} else {

Execute
script

<!DOCTYPE html PU

<htm1 xmlns="http
<head>

< <titlesHello

HTML Output

User’s Computer Server Computer

e browser requests a . html file (static content): server just sends that file
e browser requests a . php file (dynamic content): server reads it, runs any script code inside
it, then sends result across the network
o script produces output that becomes the response sent back

Why PHP?

There are many other options for server-side languages: Ruby on Rails, JSP, ASP.NET, etc. Why
choose PHP?

free and open source: anyone can run a PHP-enabled server free of charge
compatible: supported by most popular web servers

simple: lots of built-in functionality; familiar syntax

available: installed on UW's servers (Dante, Webster) and most commercial web hosts

Hello, World!

The following contents could go into a file hello.php:

<?php

print "Hello, world!";

?>

Hello, world! output

e a block or file of PHP code begins with <?php and ends with ?>
e PHP statements, function declarations, etc. appear between these endpoints

Viewing PHP output
& Morilla Firefox M=%

File Edit View History Bookmarks Tools Help
€ -2 -€ U 4G filej/c:/Do[x[B] [[Cl|Google [&)

Done (]

(@ Moziila Firefox BEX)

File Edit View History Bookmarks Tools Help

-5 - @ L @ O http://localh [+[B [[Gl-[Google [&]

Hello, world!

Done (]

e you can't view your . php page on your local hard drive; you'll either see nothing or see the
PHP source code

e if you upload the file to a PHP-enabled web setrver, requesting the . php file will run the
program and send you back its output

5.2: PHP Basic Syntax

e 5.1: Server-Side Basics

¢ 5.2: PHP Basic Syntax

¢ 5.3: Embedded PHP

e 5.4: Advanced PHP Syntax

Console output: print (5.2.2)

print

print
print

print

print

"teXt",'

"Hello, World!\n";
"Escape \"chars\" are the SAME as in Java!\n";

"You can have

line breaks in a string.";

'A string can use "single-quotes". It\'s cool!';

Hello, World! Escape "chars" are the SAME as in Java! You can have line breaks in a string. A string can use
"single-quotes". It's cool!

output

e some PHP programmers use the equivalent echo instead of print

Variables (5.2.5)

Sname = expression;
Suser name = "PinkHeartLuvr78";
Sage = 16;

$drinking age = Sage + 5;
$this class rocks = TRUE;

names are case sensitive; separate multiple words with _
names always begin with $, on both declaration and usage
always implicitly declared by assighment (type is not written)
a loosely typed language (like JavaScript or Python)

Types (5.2.3)

e basic types: int, float,boolean, string, array, object, NULL

o test what type a variable is with 1s_fype functions, e.g. 1s string

o gettype function returns a variable's type as a string (not often needed)
e PHP converts between types automatically in many cases:

o string — int auto-conversion on +

o int — float auto-conversion on /
e type-cast with (fype):

o Sage = (int) "21";

Arithmetic operators (5.2.4)

e many operators auto-convert types: 5 + "7" is 12

Comments (5.2.7)

single-line comment

// single-line comment

/*
multi-line comment
*/

e like Java, but # is also allowed
o alot of PHP code uses # comments instead of //
o we recommend # and will use it in our examples

String type (5.2.6)

$favorite food = "Ethiopian";
print S$favorite food[2]; # h

e zero-based indexing using bracket notation
e string concatenation operator is . (period), not +

o5 + "2 turtle doves" ===

o5 . "2 turtle doves" === "52 turtle doves"
e can be specified with "" or "'

Interpreted strings

Sage = 16;

print "You are " . $Sage . " years old.\n";

print "You are $age years old.\n"; # You are 16 years old.
e strings inside " " are interpreted

o variables that appear inside them will have their values inserted into the string
e strings inside ' ' are ot interpreted:

\print 'You are $age years old.\n'; # You are $age years old.\n

e if necessary to avoid ambiguity, can enclose variable in { }:

print "Today is your $ageth birthday.\n"; # Sageth not found
print "Today is your {$age}th birthday.\n";

for loop (same as Java) (5.2.9)

for (initialization; condition; update) {
statements;
}

for ($1i = 0; $1i < 10; S$i++) {
print "$i squared is " . $i * $i . ".\n";

}

bool (Boolean) type (5.2.8)

$feels like summer = FALSE;
$php is rad = TRUE;

$student count = 217;
Snonzero = (bool) $student count; # TRUE

e the following values are considered to be FALSE (all others are TRUE):
©0and 0.0 (but NOT 0.00 or 0.000)
o "" "O" and NULL (includes unset variables)
o arrays with 0 elements

e can cast to boolean using (bool)

e FALSE prints as an empty string (no output); TRUE prints asa 1

e TRUE and FALSE keywords are case insensitive

if/else statement

if (condition) {
Sstatements;

} elseif (condition) {
statements;

} else {
statements;

e NOTE: although elseif keyword is much more common, else 1if is also supported

while loop (same as Java)

while (condition) {

}

statements;

do {

}

statements;
while (condition) ;

e break and continue keywords also behave as in Java

Math operations

$a = 3;

$b = 4;

$c = sqgrt(pow($a, 2) + pow($b, 2));
abs | ceil | cos floor | log | 1ogl0 | max
min | pow rand | round | sin | sgrt tan

e the syntax for method calls, parameters, returns is the same as Java

math functions

M PI

M E

M LN2

math constants

