
Web Programming Step by Step
Chapter 12

Web 2.0 and Scriptaculous

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty
Stepp and Jessica Miller.

12.1: Designing for Web 2.0

12.1: Designing for Web 2.0

12.2: Scriptaculous

What is usability?

usability: the effectiveness with which users can achieve tasks in one software
environment
studying and improving usability is part of Human-Computer Interaction (HCI)

Visibility and feedback

visibility: ability for user to find controls that are meant to be interacted with
Where are they?
What is their state? ("Is this setting on or off?")

feedback: response from the control to the user before, during, or after an interaction

Common web usability problems

cluttered or otherwise poor layout
requires horizontal scrolling, or makes assumptions about user's screen size
poorly chosen colors
uses frames
uses splash screen(s)
poor or missing navigation controls (Back, Forward, Home)
text is not scannable (can't be read quickly)

Content usability problems

most important content isn't on the first page / screenful
nondescript headings
too many ads (or things that appear to be ads)
important site content is contained in PDF documents
isn't designed to be easily indexed by a search engine
(HTML title, meta tags, page text, link text, etc.)
tiny thumbnails of detailed large photos:

Users do not read

 vs.

this also often applies to CSE students

Link usability problems

links that don't say where they go
badly chosen link text (such as "Click here for more info")
links that forcibly open a new browser window
links opened by complex Javascript needlessly

visited links don't appear in a different color

Feature usability problems

poorly performing site search
having a web search feature (why??)
not having a site map or other means to navigate the site
relying on non-standard plugins or browser versions(e.g. Overly reliant on Flash, Java
applets, etc.)

Web design suggestions

place your name and logo on every page and make the logo a link to the home page
provide search if the site has more than 100 pages
write straightforward and simple headlines and page titles that clearly explain what the
page is about
structure the page to facilitate scanning and help users ignore large chunks of the page
in a single glance: for example, use grouping and subheadings to break a long list into
several smaller units
instead of cramming everything about a product or topic into a single, infinite page, use
hypertext to structure the content space into a starting page that provides an overview
and several secondary pages that each focus on a specific topic
use link titles to provide users with a preview of where each link will take them, before
they have clicked on it

More web design suggestions

Use relevance-enhanced image reduction when preparing small photos and images:
instead of simply resizing the original image to a tiny and unreadable thumbnail, zoom
in on the most relevant detail and use a combination of cropping and resizing.
Ensure that all important pages are accessible for users with disabilities, especially blind
users
Do the same as everybody else: if most big websites do something in a certain way,
then follow along since users will expect things to work the same on your site
Jakob's Law of the Web User Experience: users spend most of their time on other sites,
so that's where they form their expectations for how the Web works
Test your design with real users as a reality check. People do things in odd and
unexpected ways, so even the most carefully planned project will learn from usability
testing.

Sites about web design

A List Apart
CSS Play
css/edge
Design by Fire
Jeffrey Zeldman Presents
QuirksMode

Writing for the web

People read web page text differently than they read books, etc.
Writing for the web includes:

subheads
bulleted lists
highlighted keywords
short paragraphs
the "inverted pyramid"
(put the most newsworthy information at the top, and then the remaining
information follows in order of importance, with the least important at the
bottom)
a simple writing style

Web pages that suck

What's wrong with each of these web sites?

http://www.envy-hair.co.uk/index.html
http://www.corvalliscommunitypages.com/
http://www.pigletscatering.co.uk/
http://www.bigbearparties.com/
http://www.developingwebs.net/
http://www.bobmarshall.com/
http://www.orchy.com/dictionary/
http://www.delmarvadatacenter.com/main.html
http://www.videosphotosanddjs.com/
credit: webpagesthatsuck.com

Ajax usability

since Ajax requests happen in the background, users may not know the page is loading
well-designed web sites give visual cues to the user so they know to wait

Forms and usability

client-side validation
lighting up required elements left blank or filled out incorrectly
avoiding alert unless absolutely necessary

Search Engine Optimization (SEO)

get people to link to your site (particularly popular sites!)
use relevant keywords in link text

example: My friend Marty Stepp is a swell guy!
set descriptive meta tags
use a site URL and page title that contains the keywords you want to match
don't do "black-hat" stuff (link farms, hidden text, etc.)
use Google Webmaster Tools: https://www.google.com/webmasters/tools/

12.2: Scriptaculous

12.1: Designing for Web 2.0
12.2: Scriptaculous

Scriptaculous overview

Scriptaculous is another JavaScript library, built on top of Prototype, that adds:

visual effects (animation, fade in/out, highlighting)
drag and drop
Ajax features:

Auto-completing text fields (drop-down list of matching choices)
In-place editors (clickable text that you can edit and send to server)

some DOM enhancements
other stuff (unit testing, etc.)

Downloading and using Scriptaculous

<script src="http://www.cs.washington.edu/education/courses/cse190m/08sp/prototype.js"
 type="text/javascript"></script>

<script src="http://www.cs.washington.edu/education/courses/cse190m/08sp/scriptaculous.js"
 type="text/javascript"></script>

option 1: link to Scriptaculous on the CSE 190 M web site
notice that you must still link to Prototype before linking Scriptaculous

option 2: download the .zip file from their downloads page, and extract the 8 .js files
from its src/ folder to the same folder as your project

Learning about Scriptaculous

There's no complete online API documentation (argh), but the following are useful
resources:

Scriptaculous wiki documentation
Visuals
Core FX
Combo FX
Sortables
Drag 'n' Drop 1 | 2 | 3 | 4
Auto-Completion 1 | 2
DOM

Scriptaculous Effects Cheat Sheet

Visual effects

Elements that appear, disappear, animate, grow,

shrink, highlight, jiggle, ...

Effects demo

 (Appearing)

 (Disappearing)

 (Getting attention)

Click effects above

Adding effects to an element

new Effect.name(element or id);

new Effect.Shake("sidebar");

var buttons = $$("results > button");
for (var i = 0; i < buttons.length; i++) {
 new Effect.Fade(buttons[i]);
}

add an effect to an element by constructing an Effect and passing the element's
DOM object or its id
six core effects are used to implement all effects on the previous slides:

Effect.Highlight, Effect.Morph, Effect.Move,
Effect.Opacity, Effect.Parallel, Effect.Scale

Effect options

new Effect.name(element or id,
 {
 option: value,
 ...
 option: value,
 }
);

new Effect.Opacity("my_element",
 {
 duration: 2.0,
 from: 1.0,
 to: 0.5
 }
);

many effects can be customized by passing additional options
options: delay, direction, duration, fps, from, queue, sync, to,
transition

Effect events

new Effect.Fade("my_element", {
 duration: 3.0,
 afterFinish: displayMessage
});

function displayMessage(effect) {
 alert(effect.element + " is done fading now!");
}

all effects have the following events that you can handle: beforeStart,
beforeUpdate, afterUpdate, afterFinish
the afterFinish event fires once the effect is done animating

useful do something to the element (style, remove, etc.) when effect is done
each of these events receives the Effect object as its parameter

its properties: element, options, currentFrame, startOn,
finishOn
some effects (e.g. Shrink) are technically "parallel effects", so to access the
modified element, you write effect.effects[0].element rather than
just effect.element

Auto-completion

Text fields that let you type in partial text and

suggest values that contain that text

Auto-completing text fields

Scriptaculous offers ways to make a text box that
auto-completes based on prefix strings:

Autocompleter.Local : auto-completes from
an array of choices
Ajax.Autocompleter : fetches and displays list
of choices using Ajax

Using Autocompleter.Local

new Autocompleter.Local(
 element or id of text box,
 element or id of div,
 array of choices,
 { options }
);

you must create an (initially empty) div to store the auto-completion matches
it will be inserted as a ul that you can style with CSS
the user can select items by pressing Up/Down arrows; selected item is given a
class of selected

pass the choices as an array of strings
pass any extra options as a fourth parameter between { }

options: choices, partialSearch, fullSearch, partialChars,
ignoreCase

Autocompleter.Local demo

<input id="bands70s" size="40" type="text" />
<div id="bandlistarea"></div>

window.onload = function() {
 new Autocompleter.Local(
 "bands70s",
 "bandlistarea",
 ["ABBA", "AC/DC", "Aerosmith", "America", "Bay City Rollers", ...],
 {}
);
};

Using Ajax.Autocompleter

new Ajax.Autocompleter(
 element or id of text box,
 element or id of div,
 url,
 { options }
);

when you have too many choices to hold them all in an array, you can instead fetch
subsets of choices from the server using Ajax
instead of passing choices as an array, pass a URL from which to fetch them

the choices are sent back from the server as an HTML ul with li elements in it
options: paramName, tokens, frequency, minChars, indicator,
updateElement, afterUpdateElement, callback, parameters

Drag and Drop

Elements that can be moved by dragging them

with the mouse

Drag and drop facilities

Scriptaculous provides several classes for supporting drag-and-drop functionality:

Draggable : an element that can be dragged
Draggables : manages all Draggable objects on the page
Droppables : elements on which a Draggable can be dropped
Sortable : a list of items that can be reordered

Draggable

new Draggable(element or id,
 { options }
);

specifies an element as being able to be dragged
options: handle, revert, snap, zindex, constraint, ghosting,
starteffect, reverteffect, endeffect
event options: onStart, onDrag, onEnd

each callback accepts two parameters: the Draggable object, and the mouse
event

Draggable example

<div id="draggabledemo1">Draggable demo. Default options.</div>
<div id="draggabledemo2">Draggable demo.
 {snap: [40,40], revert: true}</div>

window.onload = function() {
 new Draggable("draggabledemo1");
 new Draggable("draggabledemo2", {revert: true, snap: [40, 40]});
};

Draggable demo.
Default options.

Draggable demo.
{snap:[40, 40],
revert:true}

Draggables

a global helper for accessing/managing all Draggable objects on a page
(not needed for this course)
properties: drags, observers
methods: register, unregister, activate, deactivate,
updateDrag, endDrag, keyPress, addObserver, removeObserver,
notify

Droppables

Droppables.add(element or id,
 { options }
);

specifies an element as being able to be dragged
options: accept, containment, hoverclass, overlap, greedy
event options: onHover, onDrop

each callback accepts three parameters: the Draggable, the Droppable, and
the event
Shopping Cart demo

Drag/drop shopping demo

<div id="droptarget"></div>

window.onload = function() {
 new Draggable("product1");
 new Draggable("product2");
 Droppables.add("droptarget", {onDrop: productDrop});
}

function productDrop(drag, drop, event) {
 alert("You dropped " + drag.id);
}

Sortable

Sortable.create(element or id of list,
 { options }
);

specifies a list (ul, ol) as being able to be dragged into any order
implemented internally using Draggables and Droppables
options: tag, only, overlap, constraint, containment, format,
handle, hoverclass, ghosting, dropOnEmpty, scroll,
scrollSensitivity, scrollSpeed, tree, treeTag
event options: onChange, onUpdate

each callback receives the affected element as its parameter
NOTE: for onUpdate to work, each li must have an id attribute

to make a list un-sortable again, call Sortable.destroy on it

Sortable demo

<ol id="simpsons">
 <li id="simpsons_0">Homer
 <li id="simpsons_1">Marge
 <li id="simpsons_2">Bart
 <li id="simpsons_3">Lisa
 <li id="simpsons_4">Maggie

window.onload = function() {
 Sortable.create("simpsons");
};

Homer1.
Marge2.
Bart3.
Lisa4.
Maggie5.

Events on rearranged items

window.onload = function() {
 Sortable.create("simpsons", {
 onUpdate: listUpdate
 });
};

function listUpdate() {
 // I can do anything I like here; create an Ajax.Request, etc.
 new Effect.Shake("simpsons");
}

Homer1.
Marge2.
Bart3.
Lisa4.
Maggie5.

Persistent saved items

problem: rearranged items are not "remembered"; they return to their original order when
we revisit the page

a Sortable has events you can handle when the list order changes:
onChange : during a drag, each time the list order changes
onUpdate : when a drag is done and the order has changed

in a handler for a Sortable's event, post the data to the server to save it

Subtleties of sortable lists

if the elements of the list change after you make it sortable (if you add or remove an
item using the DOM, etc.), the Sortable-ness breaks

symptom: some elements will not be draggable, or can't be dragged past
must call Sortable.create on the list again to fix it

the onUpdate event will not work unless each li has an id of the form
listID_index, e.g. "simpsons_0"

<ol id="simpsons">
 <li id="simpsons_0">Homer
 <li id="simpsons_1"u>Marge
 <li id="simpsons_2">Bart
 <li id="simpsons_3">Lisa
 <li id="simpsons_4">Maggie

In-place editing

Elements whose text content can be changed

dynamically (and saved to a server)

Ajax.InPlaceEditor

new Ajax.InPlaceEditor(element or id,
 url,
 { options }
);

options: okButton, okText, cancelLink, cancelText, savingText,
clickToEditText, formId, externalControl, rows, onComplete,
onFailure, cols, size, highlightcolor, highlightendcolor,
formClassName, hoverClassName, loadTextURL, loadingText,
callback, submitOnBlur, ajaxOptions
event options: onEnterHover, onLeaveHover, onEnterEditMode,
onLeaveEditMode

Ajax.InPlaceCollectionEditor

new Ajax.InPlaceCollectionEditor(element or id,
 url,
 {
 collection: array of choices,
 options
 }
);

a variation of Ajax.InPlaceEditor that gives a collection of choices
requires collection option whose value is an array of strings to choose from
all other options are the same as Ajax.InPlaceEditor

Playing sounds (API)

method description

Sound.play("url"); plays a sound/music file

Sound.disable(); stops future sounds from playing (doesn't mute any sound in
progress)

Sound.enable(); re-enables sounds to be playable after a call to
Sound.disable()

Sound.play("music/java_rap.mp3");
Sound.play("music/wazzaaaaaap.wav");

to silence a sound playing in progress, use Sound.play('', {replace:
true});
cannot play sounds from a local computer (must be uploaded to a web site)

Other neat features

slider control:

new Control.Slider("id of knob", "id of track", {options});

Builder - convenience class to replace document.createElement :

var img = Builder.node("img", {
 src: "images/lolcat.jpg",
 width: 100, height: 100,
 alt: "I can haz Scriptaculous?"
});
$("main").appendChild(img);

Tabbed UIs

