
Web Programming Step by Step
Chapter 11

Relational Databases and SQL

References: SQL syntax reference, w3schools tutorial

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty
Stepp and Jessica Miller.

11.1: Database Basics

11.1: Database Basics

11.2: SQL
11.3: Databases and PHP
11.4: Multi-table Queries

Relational databases

relational database: A method of structuring data as tables associated to each other by
shared attributes.
a table row corresponds to a unit of data called a record; a column corresponds to an
attribute of that record
relational databases typically use Structured Query Language (SQL) to define,
manage, and search data

Why use a database? (11.1.1)

powerful: can search it, filter data, combine data from multiple sources
fast: can search/filter a database very quickly compared to a file
big: scale well up to very large data sizes
safe: built-in mechanisms for failure recovery (e.g. transactions)
multi-user: concurrency features let many users view/edit data at same time
abstract: provides layer of abstraction between stored data and app(s)

many database programs understand the same SQL commands

Database software

Oracle
Microsoft SQL Server (powerful) and Microsoft Access (simple)
PostgreSQL (powerful/complex free open-source database system)
SQLite (transportable, lightweight free open-source database system)
MySQL (simple free open-source database system)

many servers run "LAMP" (Linux, Apache, MySQL, and PHP)
Wikipedia is run on PHP and MySQL
we will use MySQL in this course

Example world database (11.1.2)

Countries
Other columns: region, surface_area, life_expectancy, gnp_old, local_name, government_form, capital, code2

code name continent independance_year population gnp head_of_state ...

AFG Afghanistan Asia 1919 22720000 5976.0 Mohammad Omar ...

NLD Netherlands Europe 1581 15864000 371362.0 Beatrix ...

...

Cities
id name country_code district population

3793
New
York

USA
New
York

8008278

1
Los
Angeles

USA California 3694820

...

CountriesLanguages
country_code language official percentage

AFG Pashto T 52.4

NLD Dutch T 95.6

...

11.2: SQL

11.1: Database Basics
11.2: SQL

11.3: Databases and PHP
11.4: Multi-table Queries

SQL basics

SELECT name FROM Cities WHERE id = 17;

INSERT INTO Countries VALUES ('SLD', 'ENG', 'T', 100.0);

Structured Query Language (SQL): a language for searching and updating a database
a standard syntax that is used by all database software (with minor incompatiblities)
a declarative language: describes what data you are seeking, not exactly how to find it

Issuing SQL commands directly in MySQL (11.2.1

- 11.2.2)

SHOW DATABASES;

USE database;
SHOW TABLES;

SSH to a web server, then type:

$ mysql -u yourusername -p
Password:
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> USE world;
Database changed

mysql> SHOW TABLES;
+--------------------+
| Cities |
| Countries |
| CountriesLanguages |
+--------------------+
3 rows in set (0.00 sec)

The SQL SELECT statement (11.2.3)

SELECT column(s) FROM table;

SELECT name, code FROM Countries;

name code

China CHN

United States IND

Indonesia USA

Brazil BRA

Pakistan PAK

... ...

the SELECT statement searches a database and returns a set of results
the column name(s) written after SELECT filter which parts of the rows are
returned
table and column names are case-sensitive

SELECT * FROM table; keeps all columns

The DISTINCT modifier

SELECT DISTINCT column(s) FROM table;

SELECT language
FROM CountriesLanguages;

language

Dutch

English

English

Papiamento

Spanish

Spanish

Spanish

...

SELECT DISTINCT language
FROM CountriesLanguages;

language

Dutch

English

Papiamento

Spanish

...

eliminates duplicates from the result set

The WHERE clause (11.2.4)

SELECT column(s) FROM table WHERE condition(s);

SELECT name, population FROM Cities WHERE country_code = "FSM";

name population

Weno 22000

Palikir 8600

WHERE clause filters out rows based on their columns' data values
in large databases, it's critical to use a WHERE clause to reduce the result set size
suggestion: when trying to write a query, think of the FROM part first, then the WHERE
part, and lastly the SELECT part

More about the WHERE clause

WHERE column operator value(s)

SELECT name, gnp FROM Countries WHERE gnp > 2000000;

code name gnp

JPN Japan 3787042.00

DEU Germany 2133367.00

USA United States 8510700.00

...

the WHERE portion of a SELECT statement can use the following operators:
=, >, >=, <, <=
<> : not equal
BETWEEN min AND max
LIKE pattern
IN (value, value, ..., value)

Multiple WHERE clauses: AND, OR

SELECT * FROM Cities WHERE code = 'USA' AND population >= 2000000;

id name country_code district population

3793 New York USA New York 8008278

3794 Los Angeles USA California 3694820

3795 Chicago USA Illinois 2896016

...

multiple WHERE conditions can be combined using AND and OR

Approximate matches: LIKE

WHERE column LIKE pattern

SELECT code, name, population FROM Countries WHERE name LIKE 'United%'

code name population

ARE United Arab Emirates 2441000

GBR United Kingdom 59623400

USA United States 278357000

UMI United States Minor Outlying Islands 0

LIKE 'text%' searches for text that starts with a given prefix
LIKE '%text' searches for text that ends with a given suffix
LIKE '%text%' searches for text that contains a given substring

Sorting by a column: ORDER BY (11.2.5)

ORDER BY column(s)

SELECT code, name, population FROM Countries
WHERE name LIKE 'United%' ORDER BY population;

code name population

UMI United States Minor Outlying Islands 0

ARE United Arab Emirates 2441000

GBR United Kingdom 59623400

USA United States 278357000

can write ASC or DESC to sort in ascending (default) or descending order:

SELECT * FROM Countries ORDER BY population DESC;

can specify multiple orderings in decreasing order of significance:

SELECT * FROM Countries ORDER BY population DESC, gnp;

The SQL INSERT statement (11.2.6)

INSERT INTO table

VALUES (value, value, ..., value);

INSERT INTO student
VALUES (789, "Nelson", "muntz@fox.com");

adds a new row to the given table

The SQL UPDATE and DELETE statements

UPDATE table

SET column = value,
 ...,

 column = value

WHERE condition;

DELETE FROM table

WHERE condition;

UPDATE student
SET email = "lisasimpson@gmail.com"
WHERE SID = 888;

DELETE FROM student WHERE SID < 800;

modifies or deletes an existing row(s) in a table

11.3: Databases and PHP

11.1: Database Basics
11.2: SQL
11.3: Databases and PHP

11.4: Multi-table Queries

PHP MySQL functions

name description

mysql_connect connects to a database server

mysql_select_db chooses which database on server to use (similar
to SQL USE database; command)

mysql_query performs a SQL query on the database

mysql_real_escape_string encodes a value to make it safe for use in a query

mysql_fetch_array, ... returns the query's next result row as an
associative array

mysql_close closes a connection to a database

Complete PHP MySQL example

connect to world database on local computer
$db = mysql_connect("localhost", "traveler", "packmybags");
mysql_select_db("world");

execute a SQL query on the database
$results = mysql_query("SELECT * FROM Countries WHERE population > 100000000;");

loop through each country
while ($row = mysql_fetch_array($results)) {
 ?>

 <?= $row["name"] ?>, ruled by <?= $row["head_of_state"] ?>

 <?php
}
?>

Connecting to MySQL: mysql_connect (11.3.1)

mysql_connect("host", "username", "password");

mysql_select_db("database name");

connect to world database on local computer
mysql_connect("localhost", "traveler", "packmybags");
mysql_select_db("world");

mysql_connect opens connection to database on its server
any/all of the 3 parameters can be omitted (default: localhost, anonymous)

mysql_select_db sets which database to examine

Performing queries: mysql_query (11.3.2)

mysql_connect("host", "username", "password");

mysql_select_db("database name");

$results = mysql_query("SQL query");
...

$results = mysql_query("SELECT * FROM Cities WHERE code = 'USA'
 AND population >= 2000000;");

mysql_query sends a SQL query to the database
returns a special result-set object that you don't interact with directly, but instead pass
to later functions
SQL queries are in " ", end with ;, and nested quotes can be ' or \"

Result rows: mysql_fetch_array

mysql_connect("host", "username", "password");

mysql_select_db("database name");

$results = mysql_query("SQL query");

while ($row = mysql_fetch_array($results)) {
 do something with $row;
}

mysql_fetch_array returns one result row as an associative array
the column names are its keys, and each column's values are its values
example: $row["population"] gives the population from that row of the
results

Error-checking: mysql_error (11.3.3)

if (!mysql_connect("localhost", "traveler", "packmybags")) {
 die("SQL error occurred on connect: " . mysql_error());
}
if (!mysql_select_db("world")) {
 die("SQL error occurred selecting DB: " . mysql_error());
}
$query = "SELECT * FROM Countries WHERE population > 100000000;";
$results = mysql_query($query);
if (!$results) {
 die("SQL query failed:\n$query\n" . mysql_error());
}

SQL commands can fail: database down, bad password, bad query, ...
for debugging, always test the results of PHP's mysql functions

if they fail, stop script with die function, and print mysql_error result to see
what failed
give a descriptive error message and also print the query, if any

Complete example w/ error checking

connect to world database on local computer
check(mysql_connect("localhost", "traveler", "packmybags"), "connect");
check(mysql_select_db("world"), "selecting db");

execute a SQL query on the database
$query = "SELECT * FROM Countries WHERE population > 100000000;";
$results = mysql_query($query);
check($results, "query of $query");

loop through each country
while ($row = mysql_fetch_array($results)) {
 ?>
 <?= $row["name"] ?>, ruled by <?= $row["head_of_state"] ?>
 <?php
}

makes sure result is not false/null; else prints error
function check($result, $message) {
 if (!$result) {
 die("SQL error during $message: " . mysql_error());
 }
}
?>

Other MySQL PHP functions

name description

mysql_num_rows returns number of rows matched by the query

mysql_num_fields returns number of columns per result in the query

mysql_list_dbs returns a list of databases on this server

mysql_list_tables returns a list of tables in current database

mysql_list_fields returns a list of fields in the current data

complete list

11.4: Multi-table Queries

11.1: Database Basics
11.2: SQL
11.3: Databases and PHP
11.4: Multi-table Queries

Example simpsons database

students

id name email

123 Bart bart@fox.com

456 Milhouse milhouse@fox.com

888 Lisa lisa@fox.com

404 Ralph ralph@fox.com

teachers

id name

1234 Krabappel

5678 Hoover

9012 Stepp

courses

id name teacher_id

10001
Computer
Science 142

1234

10002
Computer
Science 143

5678

10003
Computer
Science
190M

9012

10004
Informatics
100

1234

grades

student_id course_id grade

123 10001 B-

123 10002 C

456 10001 B+

888 10002 A+

888 10003 A+

404 10004 D+

Querying multi-table databases

When we have larger datasets spread across multiple tables, we need queries that can answer
high-level questions such as:

What courses has Bart taken and gotten a B- or better?
What courses have been taken by both Bart and Lisa?
Who are all the teachers Bart has had?
How many total students has Ms. Krabappel taught, and what are their names?

To do this, we'll have to join data from several tables in our SQL queries.

Cross product with JOIN (11.4.1)

SELECT column(s) FROM table1 JOIN table2;

SELECT * FROM students JOIN grades;

id name email student_id course_id grade

123 Bart bart@fox.com 123 10001 B-

404 Ralph ralph@fox.com 123 10001 B-

456 Milhouse milhouse@fox.com 123 10001 B-

888 Lisa lisa@fox.com 123 10001 B-

123 Bart bart@fox.com 123 10002 C

404 Ralph ralph@fox.com 123 10002 C

... (24 rows returned)

cross product or Cartesian product: combines each row of first table with each row
of second

produces M * N rows, where table 1 has M rows and table 2 has N
problem: produces too much irrelevant/meaningless data

Joining with ON clauses (11.4.2)

SELECT column(s)

FROM table1

 JOIN table2 ON condition(s)
 ...

 JOIN tableN ON condition(s);

SELECT *
FROM students
 JOIN grades ON id = student_id;

join: a relational database operation that combines records from two or more tables if
they satisfy certain conditions
the ON clause specifies which records from each table are matched
often the rows are linked by their key columns

Join example

SELECT *
FROM students
 JOIN grades ON id = student_id;

id name email student_id course_id grade

123 Bart bart@fox.com 123 10001 B-

123 Bart bart@fox.com 123 10002 C

404 Ralph ralph@fox.com 404 10004 D+

456 Milhouse milhouse@fox.com 456 10001 B+

888 Lisa lisa@fox.com 888 10002 A+

888 Lisa lisa@fox.com 888 10003 A+

table.column can be used to disambiguate column names:

SELECT *
FROM students
 JOIN grades ON students.id = grades.student_id;

Filtering columns in a join

SELECT name, course_id, grade
FROM students
 JOIN grades ON students.id = student_id;

name course_id grade

Bart 10001 B-

Bart 10002 C

Ralph 10004 D+

Milhouse 10001 B+

Lisa 10002 A+

Lisa 10003 A+

if a column exists in multiple tables, it may be written as table.column

Giving names to tables

SELECT name, g.*
FROM students s
 JOIN grades g ON s.id = g.student_id;

name student_id course_id grade

Bart 123 10001 B-

Bart 123 10002 C

Ralph 404 10004 D+

Milhouse 456 10001 B+

Lisa 888 10002 A+

Lisa 888 10003 A+

can give names to tables, like a variable name in Java
to specify all columns from a table, write table.*

Filtered join (JOIN with WHERE) (11.4.3)

SELECT name, course_id, grade
FROM students s
 JOIN grades g ON s.id = g.student_id
WHERE s.id = 123;

name course_id grade

Bart 10001 B-

Bart 10002 C

FROM / JOIN glue the proper tables together, and WHERE filters the results
what goes in the ON clause, and what goes in WHERE?

ON directly links columns of the joined tables
WHERE sets additional constraints such as particular values (123, 'Bart')

Multi-way join

SELECT c.name
FROM courses c
 JOIN grades g ON g.course_id = c.id
 JOIN students bart ON g.student_id = bart.id
WHERE bart.name = 'Bart' AND g.grade <= 'B-';

name

Computer Science 142

grade column sorts alphabetically, so grades better than B- are ones <= it

A suboptimal query

What courses have been taken by both Bart and Lisa?

SELECT bart.course_id
FROM grades bart
 JOIN grades lisa ON lisa.course_id = bart.course_id
WHERE bart.student_id = 123
 AND lisa.student_id = 888;

problem: requires us to know Bart/Lisa's Student IDs, and only spits back course IDs,
not names.
Write a version of this query that gets us the course names, and only requires us to know
Bart/Lisa's names, not their IDs.

Improved query

What courses have been taken by both Bart and Lisa?

SELECT DISTINCT c.name
FROM courses c
 JOIN grades g1 ON g1.course_id = c.id
 JOIN students bart ON g1.student_id = bart.id
 JOIN grades g2 ON g2.course_id = c.id
 JOIN students lisa ON g2.student_id = lisa.id
WHERE bart.name = 'Bart'
 AND lisa.name = 'Lisa';

Practice queries

What are the names of all teachers Bart has had?

SELECT DISTINCT t.name
FROM teachers t
 JOIN courses c ON c.teacher_id = t.id
 JOIN grades g ON g.course_id = c.id
 JOIN students s ON s.id = g.student_id
WHERE s.name = 'Bart';

How many total students has Ms. Krabappel taught, and what are their names?

SELECT DISTINCT s.name
FROM students s
 JOIN grades g ON s.id = g.student_id
 JOIN courses c ON g.course_id = c.id
 JOIN teachers t ON t.id = c.teacher_id
WHERE t.name = 'Krabappel';

actors

id first_name last_name gender

433259 William Shatner M

797926 Britney Spears F

831289 Sigourney Weaver F

...

movies

id name year rank

112290 Fight Club 1999 8.5

209658 Meet the Parents 2000 7

210511 Memento 2000 8.7

...

roles

actor_id movie_id role

433259 313398 Capt. James T. Kirk

433259 407323 Sgt. T.J. Hooker

797926 342189 Herself

...

Example imdb database (11.1.2)

also available, imdb_small with fewer records (for testing queries)
other tables:

directors (id, first_name, last_name)
movies_directors (director_id, movie_id)
movies_genres (movie_id, genre)

IMDb query example

[stepp@webster ~]$ mysql -u myusername -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> use imdb_small;
Database changed

mysql> select * from actors where first_name like '%mick%';
+--------+------------+-----------+--------+
| id | first_name | last_name | gender |
+--------+------------+-----------+--------+
71699	Mickey	Cantwell	M
115652	Mickey	Dee	M
470693	Mick	Theo	M
716748	Mickie	McGowan	F
+--------+------------+-----------+--------+
4 rows in set (0.01 sec)

IMDb table relationships / ids (11.4.3)

Designing a query (11.4.4)

Figure out the proper SQL queries in the following way:
Which table(s) contain the critical data? (FROM)
Which columns do I need in the result set? (SELECT)
How are tables connected (JOIN) and values filtered (WHERE)?

Test on a small data set (imdb_small).
Confirm on the real data set (imdb).
Try out the queries first in the MySQL console.
Write the PHP code to run those same queries.

Make sure to check for SQL errors at every step!!

