
Web Programming Step by Step
Chapter 8

The Document Object Model (DOM)

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp and Jessica
Miller.

8.1: Global DOM Objects

8.1: Global DOM Objects
8.2: DOM Element Objects
8.3: The DOM Tree

The six global DOM objects

Every Javascript program can refer to the following global objects:

name description

document current HTML page and its content

history list of pages the user has visited

location URL of the current HTML page

navigator info about the web browser you are using

screen info about the screen area occupied by the browser

window the browser window

The window object

the entire browser window; the top-level object in DOM hierarchy

technically, all global code and variables become part of the window object
properties:

document, history, location, name
methods:

alert, confirm, prompt (popup boxes)
setInterval, setTimeout clearInterval, clearTimeout (timers)
open, close (popping up new browser windows)
blur, focus, moveBy, moveTo, print, resizeBy, resizeTo, scrollBy,
scrollTo

The document object

the current web page and the elements inside it

properties:
anchors, body, cookie, domain, forms, images, links, referrer, title, URL

methods:
getElementById

getElementsByName

getElementsByTagName

close, open, write, writeln
complete list

The location object

the URL of the current web page

properties:
host, hostname, href, pathname, port, protocol, search

methods:
assign, reload, replace

complete list

The navigator object

information about the web browser application

properties:
appName, appVersion, browserLanguage, cookieEnabled, platform,
userAgent

complete list
Some web programmers examine the navigator object to see what browser is being used, and
write browser-specific scripts and hacks:

if (navigator.appName === "Microsoft Internet Explorer") { ...

(this is poor style; you should not need to do this)

The screen object

information about the client's display screen

properties:
availHeight, availWidth, colorDepth, height, pixelDepth, width
complete list

The history object

the list of sites the browser has visited in this window

properties:
length

methods:
back, forward, go

complete list
sometimes the browser won't let scripts view history properties, for security

Unobtrusive JavaScript (8.1.1)

JavaScript event code seen previously was obtrusive, in the HTML; this is bad style
now we'll see how to write unobtrusive JavaScript code

HTML with minimal JavaScript inside
uses the DOM to attach and execute all JavaScript functions

allows separation of web site into 3 major categories:
content (HTML) - what is it?
presentation (CSS) - how does it look?
behavior (JavaScript) - how does it respond to user interaction?

Obtrusive event handlers (bad)

<button id="ok" onclick="okayClick();">OK</button>

// called when OK button is clicked
function okayClick() {

 alert("booyah");

}

this is bad style (HTML is cluttered with JS code)
goal: remove all JavaScript code from page's body

Attaching an event handler in JavaScript code

// where element is a DOM element object

element.event = function;

var okButton = document.getElementById("ok");

okButton.onclick = okayClick;

it is legal to attach event handlers to elements' DOM objects in your JavaScript code
this is better style than attaching them in the XHTML
Where should we put the above code?

A failed attempt at being unobtrusive

 <head>

 <script src="myfile.js" type="text/javascript"></script>
 </head>

 <body>

 <div><button id="ok">OK</button></div>

// global code
var okButton = document.getElementById("ok");

okButton.onclick = okayClick; // error: okButton is undefined

problem: global JS code runs the moment the script is loaded
script in head is processed before page's body has loaded

no elements are available yet or can be accessed yet via the DOM
we need a way to attach the handler just as the page finishes loading

The window.onload event (8.1.1)

window.onload = functionName; // global code

// this will run once the page has finished loading

function functionName() {

 element.event = functionName;

 element.event = functionName;
 ...

}

we want to attach our event handlers right after the page is done loading
there is a global event called window.onload event that occurs at that moment

in window.onload handler we attach all the other handlers to run when events occur

An unobtrusive event handler

<!-- look Ma, no JavaScript! -->
<button id="ok">OK</button>

window.onload = pageLoad; // global code

// called when page loads; sets up event handlers
function pageLoad() {

 var okButton = document.getElementById("ok");

 okButton.onclick = okayClick;
}

function okayClick() {

 alert("booyah");

}

Common unobtrusive JS errors

many students mistakenly write () when attaching the handler

window.onload = pageLoad();

window.onload = pageLoad;

okButton.onclick = okayClick();

okButton.onclick = okayClick;

our JSLint checker will catch this mistake
event names are all lowercase, not capitalized like most variables

window.onLoad = pageLoad;

window.onload = pageLoad;

Anonymous functions (8.1.2)

function(parameters) {

 statements;
}

JavaScript allows you to declare anonymous functions
quickly creates a function without giving it a name
can be stored as a variable, attached as an event handler, etc.

Anonymous function example

window.onload = function() {
 var okButton = document.getElementById("ok");

 okButton.onclick = okayClick;

};

function okayClick() {

 alert("booyah");

}

or the following is also legal (though harder to read and bad style):

window.onload = function() {
 var okButton = document.getElementById("ok");

 okButton.onclick = function() {
 alert("booyah");

 };
};

The keyword this (8.1.3)

window.onload = pageLoad;

function pageLoad() {

 var okButton = document.getElementById("ok");

 okButton.onclick = okayClick; // bound to okButton here
}

function okayClick() { // okayClick knows what DOM object
 this.innerHTML = "booyah"; // it was called on
}

event handlers attached unobtrusively are bound to the element
inside the handler, the element can refer to itself as this

also useful when the same handler is shared on multiple elements

Fixing redundant code with this

<fieldset>

 <label><input id="Huey" type="radio" name="ducks" /> Huey</label>

 <label><input id="Dewey" type="radio" name="ducks" /> Dewey</label>

 <label><input id="Louie" type="radio" name="ducks" /> Louie</label>

</fieldset>

function processDucks() {

 if (document.getElementById("huey").checked) {

 alert("Huey is checked!");

 } else if (document.getElementById("dewey").checked) {

 alert("Dewey is checked!");

 } else {

 alert("Louie is checked!");

 }

 alert(this.id + " is checked!");
}

8.2: DOM Element Objects

8.1: Global DOM Objects
8.2: DOM Element Objects
8.3: The DOM Tree

Modifying text inside an element

var paragraph = document.getElementById("welcome");

paragraph.innerHTML = "Welcome to our site!"; // change text on page

DOM element objects have the following properties:

innerHTML : text and/or HTML tags inside a node
textContent : text (no HTML tags) inside a node

simpler than innerHTML, but not supported in IE6
value : the value inside a form control

Abuse of innerHTML

// bad style!
var paragraph = document.getElementById("welcome");

paragraph.innerHTML = "<p>text and link";

innerHTML can inject arbitrary HTML content into the page
however, this is prone to bugs and errors and is considered poor style
we forbid using innerHTML to inject HTML tags; inject plain text only

so how do we add content with HTML tags in it to the page?

Adjusting styles with the DOM (8.2.2)

<button id="clickme">Color Me</button>

window.onload = function() {

 document.getElementById("clickme").onclick = changeColor;

};

function changeColor() {

 var clickMe = document.getElementById("clickme");

 clickMe.style.color = "red";
}

style property lets you set any CSS style for an element
contains same properties as in CSS, but with camelCasedNames

examples: backgroundColor, borderLeftWidth, fontFamily

Common DOM styling errors

many students forget to write .style when setting styles

var clickMe = document.getElementById("clickme");

clickMe.color = "red";

clickMe.style.color = "red";

style properties are capitalized likeThis, not like-this

clickMe.style.font-size = "14pt";

clickMe.style.fontSize = "14pt";

style properties must be set as strings, often with units at the end

clickMe.style.width = 200;

clickMe.style.width = "200px";
clickMe.style.padding = "0.5em";

write the value you would have written in the CSS, but in quotes

Unobtrusive styling (8.2.3)

function okayClick() {

 this.style.color = "red";

 this.className = "highlighted";
}

.highlighted { color: red; }

well-written JavaScript code should contain as little CSS as possible
use JS to set CSS classes/IDs on elements
define the styles of those classes/IDs in your CSS file

8.3: The DOM Tree

8.1: Global DOM Objects
8.2: DOM Element Objects
8.3: The DOM Tree

Complex DOM manipulation problems

How would we do each of the following in JavaScript code? Each involves modifying each one of a group of
elements ...

When the Go button is clicked, reposition all the divs of class puzzle to random x/y locations.
When the user hovers over the maze boundary, turn all maze walls red.
Change every other item in the ul list with id of TAs to have a gray background.

The tree of DOM objects

The elements of a page are nested into a tree-like structure of objects
the DOM has properties and methods for traversing this tree

Types of DOM nodes (8.3.1)

<p>

 This is a paragraph of text with a

 link.

</p>

 element nodes (HTML tag)
can have children and/or attributes

 text nodes (text in a block element)

 attribute nodes (attribute/value pair)
text/attributes are children in an element node
they cannot have children or attributes

Traversing the DOM tree (8.3.2 - 8.3.3)

every node's DOM object has the following properties:

name(s) description

firstChild, lastChild start/end of this node's list of children

childNodes array of all this node's children

nextSibling, previousSibling neighboring nodes with the same parent

parentNode the element that contains this node

complete list of DOM node properties
browser incompatiblity information (IE6 sucks)

DOM tree traversal example

<p id="foo">This is a paragraph of text with a

 link.</p>

Element vs. text nodes

<div>

 <p>

 This is a paragraph of text with a

 link.

 </p>

</div>

Q: How many children does the div above have?
A: 3

an element node representing the <p>
two text nodes representing "\n\t" (before/after the paragraph)

Q: How many children does the paragraph have? The a tag?

Selecting groups of DOM objects (8.3.5)

methods in document and other DOM objects for accessing descendents:

name description

getElementsByTagName
returns array of descendents that have the given HTML tag, such as
"div"

getElementsByName
returns array of descendents that have the given name attribute
(mostly useful for accessing form controls)

Getting all elements of a certain type

highlight all paragraphs in the document:

var allParas = document.getElementsByTagName("p");
for (var i = 0; i < allParas.length; i++) {

 allParas[i].style.backgroundColor = "yellow";

}

<body>

 <p>This is the first paragraph</p>
 <p>This is the second paragraph</p>
 <p>You get the idea...</p>
</body>

Combining with getElementById

highlight all paragraphs inside of the section with ID "address":

var addr = document.getElementById("address");

var addrParas = addr.getElementsByTagName("p");
for (var i = 0; i < addrParas.length; i++) {

 addrParas[i].style.backgroundColor = "yellow";

}

<p>This won't be returned!</p>

<div id="address">

 <p>1234 Street</p>
 <p>Atlanta, GA</p>
</div>

Creating new nodes (8.3.5)

// create a new <h2> node
var newHeading = document.createElement("h2");
newHeading.innerHTML = "This is a heading";

newHeading.style.color = "green";

document.createElement("tag") : creates and returns a new empty DOM node
representing an element of that type

this node's properties can be set just like any other DOM node's
document.createTextNode("text") : creates and returns a new text node containing the
given text

Modifying the DOM tree

Every DOM element object has these methods:

name description

appendChild(node) places given node at end of this node's child list

insertBefore(new, old)
places the given new node in this node's child list just before old
child

removeChild(node) removes given node from this node's child list

replaceChild(new, old) replaces given child with new node

Adding a node to the page

window.onload = function() {

 var thisSlide = document.getElementById("slide38");

 thisSlide.onclick = slideClick;

}

function slideClick() {

 var p = document.createElement("p");
 p.innerHTML = "A paragraph!";

 this.appendChild(p);
}

merely creating a node does not add it to the page
you must add the new node as a child of an existing element on the page

Firebug's debugger

open Firebug, click Script tab
click to the left of a line to set a breakpoint
refresh page; when script gets to that line, program will halt

Breakpoints

once stopped at a breakpoint, you can examine variables in the Watch tab at right
can click + to see properties/methods inside any object
this variable holds data about current object, or global data
if the object is global or not listed, type its name in the "New watch expression..." box

Stepping through code

once stopped at a breakpoint, you can continue execution:
 continue (F8): start program running again
 step over (F10): run current line of code completely, then stop again
step into (F11): run current line of code; if it contains a call to another function, go into it
step out (Shift-F11): run the current function to completion and return, then stop

Debugging CSS property code

expand DOM object with +, and expand its style property to see all styles
also look at HTML (left) tab, Style (right) tab to see styles

General good coding practices

ALWAYS code with Firebug installed
incremental development: code a little, test a little
follow good general coding principles

remove redundant code
make each line short and simple

use lines and variables liberally
it's good to save parts of a complex computation as variables
helps see what part of a big expression was bad/undefined/etc.
blank lines and profuse whitespace make code easier to read

don't fear the Firebug debugger

