
Web Programming Step by Step
Chapter 6

HTML Forms and Server-side Data

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

 

6.1: Form Basics

6.1: Form Basics

6.2: Form Controls
6.3: Submitting Data
6.4: Processing Form Data in PHP

1 of 24



Web data

most interesting web pages revolve around data
examples: Google, IMDB, Digg, Facebook, YouTube, Rotten Tomatoes
can take many formats: text, HTML, XML, multimedia

many of them allow us to access their data
some even allow us to submit our own new data
most server-side web programs accept parameters that guide their execution

Query strings and parameters (6.1.1)

URL?name=value&name=value...

http://example.com/student_login.php?username=stepp&sid=1234567

query string: a set of parameters passed from a browser to a web server
often passed by placing name/value pairs at the end of a URL
above, parameter username has value stepp, and sid has value 1234567

PHP code on the server can examine and utilize the value of parameters

2 of 24



HTML forms

form: a group of UI controls that accepts
information from the user and sends the
information to a web server
forms use HTML UI controls (buttons,
checkboxes, text fields, etc.)
the information is sent to the server as a
query string
JavaScript can be used to create
interactive controls (seen later)

HTML form: <form> (6.1.2)

<form action="web service URL">
  form controls
</form>

required action attribute gives the URL of the server web service that will process this
form's data

3 of 24



Form example

<form action="http://www.google.com/search">
  <div>
    Let's search Google:
    <input name="q" />
    <input type="submit" />
  </div>
</form>

Let's search Google: 

should wrap the form's controls in a block element such as div

Form controls: <input>

<input type="text" name="q" value="Colbert Report" />
<input type="submit" value="Booyah!" />

 

input element is used to create many UI controls
an inline element that MUST be self-closed

name attribute specifies name of query parameter to pass to server
type can be button, checkbox, file, hidden, password, radio, reset,
submit, text, ...
value attribute specifies control's initial text

4 of 24



6.2: Form Controls

6.1: Form Basics
6.2: Form Controls

6.3: Submitting Data
6.4: Processing Form Data in PHP

Text fields: <input> (6.2.1)

<input type="text" size="10" maxlength="8" /> NetID<br />
<input type="password" size="16" /> Password
<input type="submit" value="Log In" />

 NetID

 Password 

input attributes: disabled, maxlength, readonly, size, value
size attribute controls onscreen width of text field
maxlength limits how many characters user is able to type into field

5 of 24



Text boxes: <textarea> (6.2.2)

a multi-line text input area (inline)

<textarea rows="4" cols="20">
Type your comments here.
</textarea>

initial text is placed inside textarea tag (optional)
required rows and cols attributes specify height/width in characters
optional readonly attribute means text cannot be modified

Checkboxes: <input> (6.2.3)

yes/no choices that can be checked and unchecked (inline)

<input type="checkbox" name="lettuce" /> Lettuce
<input type="checkbox" name="tomato" checked="checked" /> Tomato
<input type="checkbox" name="pickles" /> Pickles

 Lettuce  Tomato  Pickles 

none, 1, or many checkboxes can be checked at same time
when sent to server, any checked boxes will be sent with value on:

http://webster.cs.washington.edu/params.php?tomato=on&pickles=on

use checked="checked" attribute in HTML to initially check the box

6 of 24



Radio buttons: <input> (6.2.4)

sets of mutually exclusive choices (inline)

<input type="radio" name="cc" value="visa" checked="checked" /> Visa
<input type="radio" name="cc" value="mastercard" /> MasterCard
<input type="radio" name="cc" value="amex" /> American Express

 Visa  MasterCard  American Express 

grouped by name attribute (only one can be checked at a time)
must specify a value for each one or else it will be sent as value on

Text labels: <label> (6.2.5)

<label><input type="radio" name="cc" value="visa" checked="checked" /> Visa</label>
<label><input type="radio" name="cc" value="mastercard" /> MasterCard</label>
<label><input type="radio" name="cc" value="amex" /> American Express</label>

 Visa  MasterCard  American Express 

associates nearby text with control, so you can click text to activate control
can be used with checkboxes or radio buttons
label element can be targeted by CSS style rules

7 of 24



Drop-down list: <select>, <option> (6.2.6)

menus of choices that collapse and expand (inline)

<select name="favoritecharacter">
  <option>Jerry</option>
  <option>George</option>
  <option>Kramer</option>
  <option>Elaine</option>
</select>

option element represents each choice
select optional attributes: disabled, multiple, size
may need to specify a value for each option on IE6

Using <select> for lists

<select name="favoritecharacter[]" size="3" multiple="multiple">
  <option>Jerry</option>
  <option>George</option>
  <option>Kramer</option>
  <option>Elaine</option>
  <option selected="selected">Newman</option>
</select>

 

optional multiple attribute allows selecting multiple items with shift- or ctrl-click
must declare parameter's name with [] if you allow multiple selections

option tags can be set to be initially selected

8 of 24



Option groups: <optgroup>

<select name="favoritecharacter">
  <optgroup label="Major Characters">
    <option>Jerry</option>
    <option>George</option>
    <option>Kramer</option>
    <option>Elaine</option>
  </optgroup>
  <optgroup label="Minor Characters">
    <option>Newman</option>
    <option>Susan</option>
  </optgroup>
</select>

What should we do if we don't like the bold italic?

Reset buttons (6.2.7)

Name: <input type="text" name="name" /> <br />
Food: <input type="text" name="meal" value="pizza" /> <br />
<label>Meat? <input type="checkbox" name="meat" /></label> <br />
<input type="reset" />

Name: 

Food: 

Meat? 

 

when clicked, returns all form controls to their initial values
specify custom text on the button by setting its value attribute

9 of 24



Grouping input: <fieldset>, <legend> (6.2.8)

groups of input fields with optional caption (block)

<fieldset>
  <legend>Credit cards:</legend>
    <input type="radio" name="cc" value="visa" checked="checked" /> Visa
    <input type="radio" name="cc" value="mastercard" /> MasterCard
    <input type="radio" name="cc" value="amex" /> American Express
</fieldset>

Credit cards:

 Visa  MasterCard  American Express

fieldset groups related input fields; legend supplies an optional caption

Common UI control errors

“I changed the checkbox's checked property, the textarea's inner text, the text box's
value ... but when I refresh, the page doesn't reflect this change!”

By default, when you refresh a page in your browser, it leaves the previous values in all
UI controls
it does this in case you were filling out a long form and needed to refresh it, but didn't
want it to clear out all the info you'd entered
if you want it to clear out all UI controls' state and values, you must do a full refresh

Firefox: Shift-Ctrl-R
Mac: Shift-Command-R

10 of 24



Styling form controls (6.2.9)

element[attribute="value"] {
  property : value;

  property : value;
  ...

  property : value;
}

input[type="text"] {
  background-color: yellow;
  font-weight: bold;
}

BoratBoratBoratBorat

attribute selector: matches only elements that have a particular attribute value
useful for controls because many share the same element (input)

Styling Text Boxes

<textarea rows="3" cols="40"></textarea>

body { height: 100%; }
textarea {
  position: absolute;
  width: 50%;
  height: 15%;
}

XHTML validator requires rows and cols on a textarea
if you want a textarea at a specific width/height in pixels or %, you must specify
rows/cols in the XHTML and width/height in the CSS

the rows/cols will be ignored but must be there anyway...
sometimes specifying a height on the page's body helps
sometimes using absolute/fixed positioning on the textarea helps

11 of 24



6.3: Submitting Data

6.1: Form Basics
6.2: Form Controls
6.3: Submitting Data

6.4: Processing Form Data in PHP

Problems with submitting data

<label><input type="radio" name="cc" /> Visa</label>
<label><input type="radio" name="cc" /> MasterCard</label> <br />
Favorite Star Trek captain:
<select name="startrek">
  <option>James T. Kirk</option>
  <option>Jean-Luc Picard</option>
</select> <br />

 Visa  MasterCard

Favorite Star Trek captain: 

the following form may look correct, but when you submit it...
[cc] => on, [startrek] => Jean-Luc Picard

12 of 24



The value attribute

<label><input type="radio" name="cc" value="visa" /> Visa</label>
<label><input type="radio" name="cc" value="mastercard"/> MasterCard</label> <br />
Favorite Star Trek captain:
<select name="startrek">
  <option value="kirk">James T. Kirk</option>
  <option value="picard">Jean-Luc Picard</option>
</select> <br />

 Visa  MasterCard

Favorite Star Trek captain: 

value attribute controls what will be submitted if a control is selected
[cc] => visa, [startrek] => picard

URL-encoding (6.3.1)

certain characters are not allowed in URL query parameters:
examples: " ", "/", "=", "&"

when passing a parameter that contains one of these, it is URL-encoded
"Marty's cool!?" → "Marty%27s+cool%3F%21"

you don't usually need to worry about this:
the browser automatically URL-encodes parameters before sending them
PHP scripts that accept query parameters automatically URL-decode them
... but occasionally the weird encoded version does pop up
(e.g. when debugging in Firebug)

13 of 24



Hidden input parameters (6.3.2)

<input type="text" name="username" /> Name <br />
<input type="text" name="sid" /> SID <br />
<input type="hidden" name="school" value="UW" />
<input type="hidden" name="quarter" value="48sp" />

 Name

 SID

an invisible parameter that is still passed to the server when form is submitted
useful for passing on additional state that isn't modified by the user

Submitting data to a web server

though web browsers mostly retrieve data from servers, sometimes they also want to send
new data onto the server

Hotmail: Send a message
Flickr: Upload a photo
Google Calendar: Create an appointment

the data is sent in HTTP requests to the server
with HTML forms
with Ajax (seen later)

the data is placed into the request as parameters

14 of 24



HTTP GET vs. POST requests (6.3.3)

GET : asks a server for a page or data
if request has parameters, they are sent in the URL as a query string

POST : submits data to a web server and retrieves the server's response
if request has parameters, they are embedded in the request packet, not the URL

For submitting data, a POST request is more appropriate than a GET
GET requests embed their parameters in their URLs
URLs are limited in length (~ 1024 characters)
URLs cannot contain special characters without encoding
private data in a URL can be seen or modified by users

Form POST example

<form action="http://foo.com/app.php" method="post">
  <div>
    Name: <input type="text" name="name" /> <br />
    Food: <input type="text" name="meal" /> <br />
    <label>Meat? <input type="checkbox" name="meat" /></label> <br />
    <input type="submit" />
  <div>
</form>

Name: 

Food: 

Meat? 

15 of 24



Uploading files (6.3.4)

<form action="http://webster.cs.washington.edu/params.php"
      method="post" enctype="multipart/form-data">
  Upload an image as your avatar:
  <input type="file" name="avatar" />
  <input type="submit" />
</form>

Upload an image as your avatar: 

add a file upload to your form as an input tag with type of file
must also set the enctype attribute of the form

it makes sense that the form's request method must be post (an entire file can't be put
into a URL!)
form's enctype (data encoding type) must be set to multipart/form-data or else
the file will not arrive at the server

6.4: Processing Form Data in PHP

6.1: Form Basics
6.2: Form Controls
6.3: Submitting Data
6.4: Processing Form Data in PHP

16 of 24



"Superglobal" arrays (6.4.1)

PHP superglobal arrays (global variables) contain information about the current request,
server, etc.:

Array Description

$_GET, $_POST parameters passed to GET and POST requests

$_REQUEST parameters passed to any type of request

$_SERVER, $_ENV information about the web server

$_FILES files uploaded with the web request

$_SESSION, $_COOKIE "cookies" used to identify the user (seen later)

These are special kinds of arrays called associative arrays.

Associative arrays (6.4.1)

$blackbook = array();
$blackbook["marty"] = "206-685-2181";
$blackbook["stuart"] = "206-685-9138";
...
print "Marty's number is " . $blackbook["marty"] . ".\n";

associative array (a.k.a. map, dictionary, hash table) : an array that uses non-integer
indexes
associates a particular index "key" with a value

key "marty" maps to value "206-685-2181"
syntax for embedding an associative array element in interpreted string:

print "Marty's number is {$blackbook['marty']}.\n";

17 of 24



Creating an associative array

$name = array();

$name["key"] = value;
...

$name["key"] = value;

$name = array(key => value, ..., key => value);

$blackbook = array("marty"  => "206-685-2181",
                   "stuart" => "206-685-9138",
                   "jenny"  => "206-867-5309");

an associative array can be declared either initially empty, or with a set of predeclared
key/value pairs

Printing an associative array

print_r($blackbook);

Array
(
    [jenny] => 206-867-5309
    [stuart] => 206-685-9138
    [marty] => 206-685-2181
)

print_r function displays all keys/values in the array
var_dump function is much like print_r but prints more info
unlike print, these functions require parentheses

18 of 24



Associative array functions

if (isset($blackbook["marty"])) {
  print "Marty's phone number is {$blackbook['marty']}\n";
} else {
  print "No phone number found for Marty Stepp.\n";
}

isset, array_key_exists : whether the array contains value for given key
array_keys, array_values : list of all keys or all values in the array
asort, arsort : sorts by value, in normal or reverse order
ksort, krsort : sorts by key, in normal or reverse order

foreach loop and associative arrays

foreach ($blackbook as $key => $value) {
  print "$key's phone number is $value\n";
}

jenny's phone number is 206-867-5309
stuart's phone number is 206-685-9138
marty's phone number is 206-685-2181

both the key and the value are given a variable name
the elements will be processed in the order they were added to the array

19 of 24



Query parameters: $_REQUEST (6.4.2)

$user_name = $_REQUEST["username"];
$student_id = (int) $_REQUEST["sid"];
$eats_meat = FALSE;
if (isset($_REQUEST["meat")) {
  $eats_meat = TRUE;
}

$_REQUEST["parameter name"] returns param's value as a string
if no such parameter was passed, you'll get a warning when trying to access it; test for this
with isset

Form response pages

<?php
$name = $_REQUEST["name"];
$email = $_REQUEST["emailaddress"];
...
print("Thank you, $name, for creating
an account with address $email.\n");
?>

Thank you, Marty, for creating an account with address foo@bar.com.

users expect an HTML response page when they submit forms
the above code is not a complete page...

20 of 24



Embedded PHP and response pages

<?php
$name = $_REQUEST["name"];
$email = $_REQUEST["emailaddress"];
?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
  <head><title>Account Creation</title></head>
  <body>
    <h1>New account created.</h1>
    <p>
      Thank you, <?= $name ?>, for creating an
      account with address <?= $email ?>.
    </p>
  </body>
</html>

expression blocks get rid of print statement in previous example

Example: Exponents

<?php
$base = $_REQUEST["base"];
$exp = $_REQUEST["exponent"];
$result = pow($base, $exp);
?>

<?= $base ?> ^ <?= $exp ?> = <?= $result ?>

http://example.com/exponent.php?base=3&exponent=4

3  ̂4 = 81

21 of 24



Example: Print all parameters

<?php
foreach ($_REQUEST as $param => $value) {
  ?>

  <p>Parameter <?= $param ?> has value <?= $value ?></p>

  <?php
}
?>

http://example.com/print_params.php?name=Marty+Stepp&sid=1234567

Parameter name has value Marty Stepp

Parameter sid has value 1234567

GET or POST?

if ($_SERVER["REQUEST_METHOD"] == "GET") {
  # process a GET request
  ...
} elseif ($_SERVER["REQUEST_METHOD"] == "POST") {
  # process a POST request
  ...
}

some PHP web services process both GET and POST requests
can find out which kind of request we are currently processing by looking at the
"REQUEST_METHOD" key of the global $_SERVER array

22 of 24



Processing an uploaded file in PHP (6.4.3)

uploaded files are placed into global array $_FILES, not $_REQUEST
each element of $_FILES is itself an associative array, containing:

name - the local filename that the user uploaded
type - the MIME type of data that was uploaded, such as image/jpeg
size - file's size in bytes
tmp_name - a filename where PHP has temporarily saved the uploaded file

to permanently store the file, move it from this location into some other file

Uploading details

<input type="file" name="avatar" />

 

example: if you upload borat.jpg as a parameter named avatar,
$_FILES["avatar"]["name"] will be "borat.jpg"
$_FILES["avatar"]["type"] will be "image/jpeg"
$_FILES["avatar"]["tmp_name"] will be something like "/var/tmp
/phpZtR4TI"

23 of 24



Processing uploaded file, example

$username = $_REQUEST["username"];
if (is_uploaded_file($_FILES["avatar"]["tmp_name"])) {
  move_uploaded_file($_FILES["avatar"]["tmp_name"], "$username/avatar.jpg");
  print "Saved uploaded file as $username/avatar.jpg\n";
} else {
  print "Error: required file not uploaded";
}

functions for dealing with uploaded files:
is_uploaded_file(filename)
returns TRUE if the given filename was uploaded by the user

move_uploaded_file(from, to)
moves from a temporary file location to a more permanent file

proper idiom: check is_uploaded_file, then do move_uploaded_file

24 of 24


