
Ruby (on Rails)

CSE 190M, Spring 2009

Week 1

The Players

• Kelly "Everyday I'm Hustlin' " Dunn

• Kim "Mouse" Todd• Kim "Mouse" Todd

• Ryan "Papa T" Tucker

About the Section

• Introduce the Ruby programming language

• Use Ruby to template web pages

• Learn about Ruby on Rails and its benefits

What is Ruby?

• Programming Language

• Object-oriented

• Interpreted

Interpreted Languages

• Not compiled like Java

• Code is written and then directly executed by

an interpreter

• Type commands into interpreter and see • Type commands into interpreter and see

immediate results

Computer
Runtime
Environment

CompilerCodeJava:

ComputerInterpreterCodeRuby:

What is Ruby on Rails (RoR)

• Development framework for web applications

written in Ruby

• Used by some of your favorite sites!

Advantages of a framework

• Standard features/functionality are built-in

• Predictable application organization

– Easier to maintain

– Easier to get things going– Easier to get things going

Installation

• Windows
– Navigate to: http://www.ruby-

lang.org/en/downloads/

– Scroll down to "Ruby on Windows"

– Download the "One-click Installer"– Download the "One-click Installer"

– Follow the install instructions
• Include RubyGems if possible (this will be necessary for Rails

installation later)

• Mac/Linux
– Probably already on your computer

– OS X 10.4 ships with broken Ruby! Go here…
• http://hivelogic.com/articles/view/ruby-rails-mongrel-

mysql-osx

hello_world.rb

puts "hello world!"

puts vs. print

• "puts" adds a new line after it is done

– analogous System.out.println()

• "print" does not add a new line

– analogous to System.out.print()

Running Ruby Programs

• Use the Ruby interpreter

ruby hello_world.rb

– “ruby” tells the computer to use the Ruby

interpreterinterpreter

• Interactive Ruby (irb) console

irb

– Get immediate feedback

– Test Ruby features

Comments

this is a single line comment

=begin

this is a multiline comment

nothing in here will be part of the codenothing in here will be part of the code

=end

Variables

• Declaration – No need to declare a "type"

• Assignment – same as in Java

• Example:

x = "hello world" # Stringx = "hello world" # String

y = 3 # Fixnum

z = 4.5 # Float

r = 1..10 # Range

Objects

• Everything is an object.

– Common Types (Classes): Numbers, Strings, Ranges

– nil, Ruby's equivalent of null is also an object

• Uses "dot-notation" like Java objects

• You can find the class of any variable
x = "hello"

x.class � String

• You can find the methods of any variable or class
x = "hello"

x.methods

String.methods

Objects (cont.)

• There are many methods that all Objects have

• Include the "?" in the method names, it is a

Ruby naming convention for boolean methods

• nil?• nil?

• eql?/equal?

• ==, !=, ===

• instance_of?

• is_a?

• to_s

Numbers

• Numbers are objects

• Different Classes of Numbers

– FixNum, Float

3.eql?2 � false3.eql?2 � false

-42.abs � 42

3.4.round � 3

3.6.rount � 4

3.2.ceil � 4

3.8.floor � 3

3.zero? � false

String Methods

"hello world".length � 11

"hello world".nil? � false

"".nil? � false

"ryan" > "kelly" true"ryan" > "kelly" � true

"hello_world!".instance_of?String � true

"hello" * 3 � "hellohellohello"

"hello" + " world" � "hello world"

"hello world".index("w") � 6

Operators and Logic

• Same as Java

– Multiplication, division, addition, subtraction, etc.

• Also same as Java AND Python (WHA?!)

– "and" and "or" as well as "&&" and "||"– "and" and "or" as well as "&&" and "||"

• Strange things happen with Strings

– String concatenation (+)

– String multiplication (*)

• Case and Point: There are many ways to solve

a problem in Ruby

if/elsif/else/end

• Must use "elsif" instead of "else if"

• Notice use of "end". It replaces closing curly
braces in Java

• Example:• Example:
if (age < 35)

puts "young whipper-snapper"

elsif (age < 105)

puts "80 is the new 30!"

else

puts "wow… gratz..."

end

Inline "if" statements

• Original if-statement

if age < 105

puts "don't worry, you are still young"

end

• Inline if-statement

puts "don't worry, you are still young" if age < 105

for-loops

• for-loops can use ranges

• Example 1:

for i in 1..10

puts iputs i

end

• Can also use blocks (covered next week)

3.times do

puts "Ryan! "

end

for-loops and ranges

• You may need a more advanced range for your

for-loop

• Bounds of a range can be expressions

• Example:• Example:

for i in 1..(2*5)

puts i

end

while-loops

• Can also use blocks (next week)

• Cannot use "i++"

• Example:

i = 0i = 0

while i < 5

puts i

i = i + 1

end

unless

• "unless" is the logical opposite of "if"

• Example:

unless (age >= 105) # if (age < 105)unless (age >= 105) # if (age < 105)

puts "young."

else

puts "old."

end

until

• Similarly, "until" is the logical opposite of

"while"

• Can specify a condition to have the loop stop

(instead of continuing)(instead of continuing)

• Example

i = 0

until (i >= 5) # while (i < 5), parenthesis not required

puts I

i = i + 1

end

Methods

• Structure

def method_name(parameter1, parameter2, …)

statements

end

• Simple Example:

def print_ryan

puts "Ryan"

end

Parameters

• No class/type required, just name them!

• Example:
def cumulative_sum(num1, num2)

sum = 0

for i in num1..num2for i in num1..num2

sum = sum + i

end

return sum

end

call the method and print the result

puts(cumulative_sum(1,5))

Return

• Ruby methods return the value of the last

statement in the method, so…

def add(num1, num2)

sum = num1 + num2sum = num1 + num2

return sum

end

can become

def add(num1, num2)

num1 + num2

end

User Input

• "gets" method obtains input from a user

• Example

name = gets

puts "hello " + name + "!"puts "hello " + name + "!"

• Use chomp to get rid of the extra line

puts "hello" + name.chomp + "!"

• chomp removes trailing new lines

Changing types

• You may want to treat a String a number or a

number as a String

• to_i – converts to an integer (FixNum)

• to_f – converts a String to a Float• to_f – converts a String to a Float

• to_s – converts a number to a String

• Examples

"3.5".to_i � 3

"3.5".to_f � 3.5

3.to_s � "3"

Constants

• In Ruby, constants begin with an Uppercase

• They should be assigned a value at most once

• This is why local variables begin with a

lowercaselowercase

• Example:

Width = 5

def square

puts ("*" * Width + "\n") * Width

end

Week 1 Assignment

• Do the Space Needle homework from 142 in
Ruby

• http://www.cs.washington.edu/education/courses/cse142
/08au/homework/2/spec.pdf

• DOES need to scale using a constant• DOES need to scale using a constant

• Use syntax that is unique to Ruby whenever
possible

• Expected output can be found under the
Homework 2 Section

• http://www.cs.washington.edu/education/courses/cse142
/08au/homework.shtml

References

• Web Sites

– http://www.ruby-lang.org/en/

– http://rubyonrails.org/

• Books• Books

– Programming Ruby: The Pragmatic Programmers'

Guide (http://www.rubycentral.com/book/)

– Agile Web Development with Rails

– Rails Recipes

– Advanced Rails Recipes

