
Ajax

CS380

1



Synchronous web 

communication

� synchronous: user must wait while new pages 

load

� the typical communication pattern used in web 

pages (click, wait, refresh)CS380

2



Web applications and Ajax

� web application: a dynamic web site that 

mimics the feel of a desktop app

� presents a continuous user experience rather 

than disjoint pages

� examples: Gmail, Google Maps, Google Docs 

and Spreadsheets, Flickr, A9

CS380

3



Web applications and Ajax

� Ajax: Asynchronous JavaScript and XML

� not a programming language; a particular way of 

using JavaScript

� downloads data from a server in the background

� allows dynamically updating a page without 

making the user wait

� avoids the "click-wait-refresh" pattern

� Example: Google Suggest

CS380

4



Asynchronous web 

communication

� asynchronous: user can keep interacting with 

page while data loads

� communication pattern made possible by Ajax

CS380

5



XMLHttpRequest (and why we 

won't use it)

� JavaScript includes an XMLHttpRequest 

object that can fetch files from a web server

� supported in IE5+, Safari, Firefox, Opera, 

Chrome, etc. (with minor compatibilities)

� it can do this asynchronously (in the 

background, transparent to user)

� the contents of the fetched file can be put into 

current web page using the DOM

CS380

6



XMLHttpRequest (and why we 

won't use it)

� sounds great!...

� ... but it is clunky to use, and has various 

browser incompatibilities

� Prototype provides a better wrapper for Ajax, 

so we will use that instead

CS380

7



A typical Ajax request

1. user clicks, invoking an event handler

2. handler's code creates an XMLHttpRequest 

object

3. XMLHttpRequest object requests page from 

server

4. server retrieves appropriate data, sends it 
back

5. XMLHttpRequest fires an event when data 

arrives

� this is often called a callback

� you can attach a handler function to this event

8



A typical Ajax request
9

CS380



Prototype's Ajax model

� construct a Prototype Ajax.Request object to 
request a page from a server using Ajax

� constructor accepts 2 parameters:

1. the URL to 1. fetch, as a String,

2. a set of options, as an array of key : value pairs 

in {} braces (an anonymous JS object)

10

new Ajax.Request("url",

{

option : value,

option : value,

...

option : value

}

); JS



Prototype Ajax methods and 

properties

CS380

11

options that can be passed to the Ajax.Request constructor 



Prototype Ajax methods and 

properties

CS380

12

events in the Ajax.Request object that you can handle



Basic Prototype Ajax template
13

function handleRequest(ajax) {

alert(ajax.responseText);

} JS



XMLHttpRequest security 

restrictions

� cannot be run from a web page stored on your 

hard drive

� can only be run on a web page stored on a web 

server

� can only fetch files from the same site that the 

page is on www.foo.com/a/b/c.html can only fetch from 

www.foo.com

14



Handling Ajax errors

� for user's (and developer's) benefit, show an 
error message if a request fails

CS380

15

new Ajax.Request("url",

{

method: "get",

onSuccess: functionName,

onFailure: ajaxFailure,

onException: ajaxFailure

}

);

...

function ajaxFailure(ajax, exception) {

alert("Error making Ajax request:" + "\n\nServer 

status:\n" + ajax.status + " " + ajax.statusText +

"\n\nServer response text:\n" + ajax.responseText);

if (exception) {

throw exception;

}

} JS



Debugging Ajax code

� Net tab shows each request, its parameters, 
response, any errors

� expand a request with + and look at Response 
tab to see Ajax result

16



Creating a POST request
17

new Ajax.Request("url",

{

method: "post", // optional

parameters: { name: value, name: value, ..., name: 

value },

onSuccess: functionName,

onFailure: functionName,

onException: functionName

}

); JS

CS380



Creating a POST request

� Ajax.Request can also be used to post data to 
a web server

� method should be changed to "post" (or 
omitted; post is default)

� any query parameters should be passed as a 

parameters parameter

� written between {} braces as a set of name : value 

pairs (another anonymous object)

� get request parameters can also be passed this 

way, if you like

18

CS380



Prototype's Ajax Updater

� Ajax.Updater fetches a file and injects its 
content into an element as innerHTML

� additional (1st) parameter specifies the id of 
element to inject into

CS380

19

new Ajax.Updater(

"id",

"url",

{

method: "get"

}

); JS


