
Intro to Javascript

CS380

1

Client Side Scripting

CS380

2

Why use client-side

programming?

PHP already allows us to create dynamic web

pages. Why also use client-side scripting?

�client-side scripting (JavaScript) benefits:

� usability: can modify a page without having to

post back to the server (faster UI)

� efficiency: can make small, quick changes to

page without waiting for server

� event-driven: can respond to user actions like

clicks and key presses

CS380

3

Why use client-side

programming?

� server-side programming (PHP) benefits:

� security: has access to server's private data;

client can't see source code

� compatibility: not subject to browser

compatibility issues

� power: can write files, open connections to

servers, connect to databases, ...

CS380

4

What is Javascript?

� a lightweight programming language

("scripting language")

� used to make web pages interactive

� insert dynamic text into HTML (ex: user name)

� react to events (ex: page load user click)

� get information about a user's computer (ex:

browser type)

� perform calculations on user's computer (ex: form

validation)

CS380

5

What is Javascript?

� a web standard (but not supported identically

by all browsers)

� NOT related to Java other than by name and
some syntactic similarities

CS380

6

Javascript vs Java

� interpreted, not compiled

� more relaxed syntax and rules

� fewer and "looser" data types

� variables don't need to be declared

� errors often silent (few exceptions)

� key construct is the function rather than the
class

� "first-class" functions are used in many situations

� contained within a web page and integrates

with its HTML/CSS content
CS380

7

Javascript vs Java

CS380

8

+ =

JavaScript vs. PHP

� similarities:

�both are interpreted, not compiled

�both are relaxed about syntax, rules, and

types

�both are case-sensitive

�both have built-in regular expressions for

powerful text processing

CS380

9

JavaScript vs. PHP

� differences:
�JS is more object-oriented: noun.verb(), less

procedural: verb(noun)

�JS focuses on user interfaces and interacting

with a document; PHP is geared toward HTML

output and file/form processing

�JS code runs on the client's browser; PHP

code runs on the web server

CS380

10

JS <3

Linking to a JavaScript file:
script

� script tag should be placed in HTML page's

head

� script code is stored in a separate .js file

� JS code can be placed directly in the HTML

file's body or head (like CSS)

� but this is bad style (should separate content,
presentation, and behavior

CS380

11

<script src="filename" type="text/javascript"></script>

HTML

Event-driven programming
12

� split breaks apart a string into an array using a
delimiter

� can also be used with regular expressions (seen

later)

� join merges an array into a single string,
placing a delimiter between them

CS380

A JavaScript statement: alert

� a JS command that pops up a dialog box with
a message

CS380

13

alert("IE6 detected. Suck-mode enabled.");

JS

Event-driven programming
14

� you are used to programs start with a main
method (or implicit main like in PHP)

� JavaScript programs instead wait for user
actions called events and respond to them

� event-driven programming: writing programs
driven by user events

� Let's write a page with a clickable button that

pops up a "Hello, World" window...

CS380

Buttons

� button's text appears inside tag; can also

contain images

� To make a responsive button or other UI

control:

1. choose the control (e.g. button) and event (e.g.

mouse 1. click) of interest

2. write a JavaScript function to run when the

event occurs

3. attach the function to the event on the control
CS380

15

<button>Click me!</button> HTML

JavaScript functions
16

function name() {

statement ;

statement ;

...

statement ;

} JS

� the above could be the contents of example.js
linked to our HTML page

� statements placed into functions can be
evaluated in response to user events

function myFunction() {

alert("Hello!");

alert("How are you?");

} JS

CS380

Event handlers

� JavaScript functions can be set as event

handlers

� when you interact with the element, the function will
execute

� onclick is just one of many event HTML

attributes we'll use

� but popping up an alert window is disruptive and

annoying

� A better user experience would be to have the

CS380

17

<element attributes onclick="function();">...

HTML

<button onclick="myFunction();">Click me!</button>

HTML

Document Object Model (DOM)

� most JS code

manipulates elements on

an HTML page

� we can examine

elements' state

� e.g. see whether a box is
checked

� we can change state

� e.g. insert some new text
into a div

� we can change styles

� e.g. make a paragraph red

18

DOM element objects
19

Accessing elements:
document.getElementById

20

var name = document.getElementById("id");

JS

CS380

<button onclick="changeText();">Click me!</button>

replace me

<input id="textbox" type="text" /> HTML

function changeText() {

var span = document.getElementById("output");

var textBox = document.getElementById("textbox");

textbox.style.color = "red";

} JS

Accessing elements:
document.getElementById

21

� document.getElementById returns the DOM

object for an element with a given id

� can change the text inside most elements by
setting the innerHTML property

� can change the text in form controls by setting
the value property

CS380

Changing element style:
element.style

22

CS380

Preetify
23

CS380

function changeText() {

//grab or initialize text here

// font styles added by JS:

text.style.fontSize = "13pt";

text.style.fontFamily = "Comic Sans MS";

text.style.color = "red"; // or pink?

} JS

More Javascript Syntax24

CS380

Variables

� variables are declared with the var keyword
(case sensitive)

� types are not specified, but JS does have
types ("loosely typed")
� Number, Boolean, String, Array, Object,

Function, Null, Undefined

� can find out a variable's type by calling typeof
CS380

25

var name = expression; JS

var clientName = "Connie Client";

var age = 32;

var weight = 127.4; JS

Number type

� integers and real numbers are the same type
(no int vs. double)

� same operators: + - * / % ++ -- = += -= *= /=
%=

� similar precedence to Java

� many operators auto-convert types: "2" * 3 is 6

CS380

26

var enrollment = 99;

var medianGrade = 2.8;

var credits = 5 + 4 + (2 * 3);

JS

Comments (same as Java)

� identical to Java's comment syntax

� recall: 4 comment syntaxes

� HTML: <!-- comment -->

� CSS/JS/PHP: /* comment */

� Java/JS/PHP: // comment

� PHP: # comment

CS380

27

// single-line comment

/* multi-line comment */

JS

Math object
28

var rand1to10 = Math.floor(Math.random() * 10 + 1);

var three = Math.floor(Math.PI);

JS

CS380

� methods: abs, ceil, cos, floor, log,
max, min, pow, random, round, sin,

sqrt, tan

� properties: E, PI

Special values: null and
undefined

29

var ned = null;

var benson = 9;

// at this point in the code,

// ned is null

// benson's 9

// caroline is undefined

JS

CS380

� undefined : has not been declared, does not

exist

� null : exists, but was specifically assigned an

empty or null value

� Why does JavaScript have both of these?

Logical operators
30

CS380

� > < >= <= && || ! == != === !==

� most logical operators automatically convert
types:

� 5 < "7" is true

� 42 == 42.0 is true

� "5.0" == 5 is true

� === and !== are strict equality tests; checks
both type and value

� "5.0" === 5 is false

if/else statement (same as
Java)

31

if (condition) {

statements;

} else if (condition) {

statements;

} else {

statements;

}

JS

CS380

� identical structure to Java's if/else statement

� JavaScript allows almost anything as a
condition

Boolean type
32

var iLike190M = true;

var ieIsGood = "IE6" > 0; // false

if ("web devevelopment is great") { /* true */ }

if (0) { /* false */ }

JS

CS380

� any value can be used as a Boolean

� "falsey" values: 0, 0.0, NaN, "", null, and

undefined

� "truthy" values: anything else

� converting a value into a Boolean explicitly:
� var boolValue = Boolean(otherValue);

� var boolValue = !!(otherValue);

for loop (same as Java)
33

var sum = 0;

for (var i = 0; i < 100; i++) {

sum = sum + i;

} JS

var s1 = "hello";

var s2 = "";

for (var i = 0; i < s.length; i++) {

s2 += s1.charAt(i) + s1.charAt(i);

}

// s2 stores "hheelllloo" JS

CS380

while loops (same as Java)
34

while (condition) {

statements;

} JS

CS380

� break and continue keywords also behave as
in Java

do {

statements;

} while (condition);

JS

Popup boxes
35

alert("message"); // message

confirm("message"); // returns true or false

prompt("message"); // returns user input string

JS

CS380

Arrays
36

var name = []; // empty array

var name = [value, value, ..., value]; // pre-filled

name[index] = value; // store element

JS

CS380

var ducks = ["Huey", "Dewey", "Louie"];

var stooges = []; // stooges.length is 0

stooges[0] = "Larry"; // stooges.length is 1

stooges[1] = "Moe"; // stooges.length is 2

stooges[4] = "Curly"; // stooges.length is 5

stooges[4] = "Shemp"; // stooges.length is 5

JS

Array methods
37

var a = ["Stef", "Jason"]; // Stef, Jason

a.push("Brian"); // Stef, Jason, Brian

a.unshift("Kelly"); // Kelly, Stef, Jason, Brian

a.pop(); // Kelly, Stef, Jason

a.shift(); // Stef, Jason

a.sort(); // Jason, Stef

JS

� array serves as many data structures: list,

queue, stack, ...

� methods: concat, join, pop, push, reverse,
shift, slice, sort, splice, toString, unshift

� push and pop add / remove from back

� unshift and shift add / remove from front

� shift and pop return the element that is removed

String type

� methods: charAt, charCodeAt, fromCharCode,
indexOf, lastIndexOf, replace, split,

substring, toLowerCase, toUpperCase

� charAt returns a one-letter String (there is no char

type)

� length property (not a method as in Java)

� Strings can be specified with "" or ''

� concatenation with + :

� 1 + 1 is 2, but "1" + 1 is "11"

38

var s = "Connie Client";

var fName = s.substring(0, s.indexOf(" ")); // "Connie"

var len = s.length; // 13

var s2 = 'Melvin Merchant';

JS

More about String

� accessing the letters of a String:

39

var count = 10;

var s1 = "" + count; // "10"

var s2 = count + " bananas, ah ah ah!"; // "10 bananas, ah

ah ah!"

var n1 = parseInt("42 is the answer"); // 42

var n2 = parseFloat("booyah"); // NaN JS

� escape sequences behave as in Java: \' \" \&

\n \t \\

� converting between numbers and Strings:

var firstLetter = s[0]; // fails in IE

var firstLetter = s.charAt(0); // does work in IE

var lastLetter = s.charAt(s.length - 1); JS

CS380

Splitting strings: split and join
40

var s = "the quick brown fox";

var a = s.split(" "); // ["the", "quick", "brown", "fox"]

a.reverse(); // ["fox", "brown", "quick", "the"]

s = a.join("!"); // "fox!brown!quick!the"

JS

� split breaks apart a string into an array using a
delimiter

� can also be used with regular expressions (seen

later)

� join merges an array into a single string,
placing a delimiter between them

