
Object Oriented PHP

CS380

1

Why use classes and objects?

� PHP is a primarily procedural language

� small programs are easily written without

adding any classes or objects

� larger programs, however, become cluttered

with so many disorganized functions

� grouping related data and behavior into

objects helps manage size and complexity

CS380

2

Constructing and using objects
3

construct an object

$name = new ClassName(parameters);

access an object's field (if the field is public)

$name->fieldName

call an object's method

$name->methodName(parameters);

PHP

� the above code unzips a file

� test whether a class is installed with class_exists
CS380

$zip = new ZipArchive();

$zip->open("moviefiles.zip");

$zip->extractTo("images/");

$zip->close(); PHP

Object example: Fetch file from

web
4

create an HTTP request to fetch student.php

$req = new HttpRequest("student.php",

HttpRequest::METH_GET);

$params = array("first_name" => $fname, "last_name"

=> $lname);

$req->addPostFields($params);

send request and examine result

$req->send();

$http_result_code = $req->getResponseCode(); # 200

means OK

print "$http_result_code\n";

print $req->getResponseBody();

PHP

� PHP's HttpRequest object can fetch a document from

the webCS380

Class declaration syntax
5

class ClassName {

fields - data inside each object

public $name; # public field

private $name; # private field

constructor - initializes each object's

state

public function __construct(parameters) {

statement(s);

}

method - behavior of each object

public function name(parameters) {

statements;

}

} PHP

� inside a constructor or method, refer to the current
object as $this

Class example
6 <?php

class Point {

public $x;

public $y;

equivalent of a Java constructor

public function __construct($x, $y) {

$this->x = $x;

$this->y = $y;

}

public function distance($p) {

$dx = $this->x - $p->x;

$dy = $this->y - $p->y;

return sqrt($dx * $dx + $dy * $dy);

}

equivalent of Java's toString method

public function __toString() {

return "(" . $this->x . ", " . $this->y .

")";

}

} ?> PHP

Class usage example
7

<?php

this code could go into a file named use_point.php

include("Point.php");

$p1 = new Point(0, 0);

$p2 = new Point(4, 3);

print "Distance between $p1 and $p2 is " . $p1->distance($p2) .

"\n\n";

var_dump($p2); # var_dump prints detailed state of an object

?>

PHP

Distance between (0, 0) and (4, 3) is 5

object(Point)[2]

public 'x' => int 4

public 'y' => int 3

PHP

Basic inheritance
8

class ClassName extends ClassName {

...

}

PHP

� The given class will inherit all data and behavior from
ClassName

class Point3D extends Point {

public $z;

public function __construct($x, $y, $z) {

parent::__construct($x, $y);

$this->z = $z;

}

...

}

PHP

CS380

Static methods, fields, and

constants
9

static $name = value; # declaring a static field

const $name = value; # declaring a static constant

PHP

� static fields/methods are shared throughout a class
rather than replicated in every object

declaring a static method

public static function name(parameters) {

statements;

}

PHP

CS380

ClassName::methodName(parameters); # calling a

static method (outside class)

self::methodName(parameters); # calling a static

method (within class)

PHP

Abstract classes and interfaces
10

interface InterfaceName {

public function name(parameters);

public function name(parameters);

...

}

class ClassName implements InterfaceName { ...

PHP

CS380

abstract class ClassName {

abstract public function name(parameters);

...

}

PHP

Abstract classes and interfaces

CS380

11

� interfaces are supertypes that specify method

headers without implementations

� cannot be instantiated; cannot contain function bodies
or fields

� enables polymorphism between subtypes without
sharing implementation code

� abstract classes are like interfaces, but you can

specify fields, constructors, methods

� also cannot be instantiated; enables polymorphism
with sharing of implementation code

