

Appendix B Database Design
B.1 Database Design and Definition

Throughout the SQL chapter we connected to and queried the
IMDB database. This database was set up by IMDB and available for us
to use. But what if you want to set up your own web application need-
ing an entirely different database – how do you create a database from
scratch for your own website? This is what we are going to explore in this appendix.

Designing an accurate and consistent relational database is probably the most difficult and impor-
tant part of using a relational database management system. If you design a database poorly your ap-
plication can be slow and prone to replicated data and many errors. If your website is slow because
of the database or falls over because your database contains bad data, your users will get easily frus-
trated and stop using your web site. Luckily the RDBMS and relational database design are based on
sound theory and there are many books that cover the topic quite thoroughly. This is simply an in-
troduction to key concepts. For a more thorough and complete coverage of database design, please
see the reference list at the end of this appendix.

The first step toward creating a database from scratch is to decide
what information you actually need to store in your database and how
different pieces of information relate to one another. Once you have
done that, you then think about how to logically structure that informa-
tion into tables and how those tables should relate. In other words, what
the tables are, what the columns are, and what the keys are. Next you
think about how to physically create the structure on your RDBMS or
what data types you'll be using. This entire process is called database design.

After deciding what data to store and how to structure that data in your database, you use the
SQL data definition language to create the database and create the tables in the database.

B.1.1 Relational Database Design

Our two main goals of database design will be to:
1. accurately represent information, and
2. design a database structure that avoids repetitive data and thus data inconsistency.
An additional goal of database designers is to ensure that the database can run queries FAST!

We will leave this as an advanced topic and refer you again to the references provided at the end of
the appendix to learn how to tune and optimize your database.

Our final product of our design will be a database schema. A relational
database schema is a description of the tables in a database and how they
relate to one another. Specifically, a final database schema will contain:

• the name of all tables in a database

• the columns belonging to each table

• the data type of each column, and whether the column allows NULL values

• the primary keys of each table

database design

The process of deciding the
structure of a database.

data definition language
(DDL)

SQL statements used to cre-
ate, delete, and edit the struc-
ture (i.e. tables, and columns)
of a database.

database schema

The description of the tables
in a database along with the
relationships between them.

 Appendix B Database Design

• any foreign keys referencing other tables
To get a database schema, there are three phases of database design:
1. Conceptual design – the process of determining what information should be stored in the

database and what the relationships and dependencies are between the types of information
to be stored.

2. Logical design – the process of mapping the information we have identified in the first step
to tables, columns, and primary and foreign keys and then checking to see how we are doing
in avoiding redundant data and refining our tables from there.

3. Physical design – the process of specifying how the database will be physically created in the
RDBMS by choosing appropriate data types for our columns.

The world Database

We ground our discussion of database design in the following scenario. We have been hired by
an international non-profit organization, Ayuda, to design a database schema that stores current in-
formation about different countries in the world. For each country, Ayuda wants to store the name
of the country in English, the standard, unique three-letter country code (e.g., ‘USA' for United States
of America), as well as what continent the country is in. In order to make decisions on which coun-
tries to dedicate aid, Ayuda wants to be able to know if the country is considered developed or unde-
veloped. Common indicators for how developed a country is are population, average income, and
life expectancy. Ayuda is able to provide each country’s gross national product and population and
those two pieces of data together can be used to calculate average income. Ayuda is additionally in-
terested in storing information about each country's government such as the type of government and
the leader of the country.

In order to train its volunteers appropriately, Ayuda needs to know the languages spoken in each
country. Ayuda also needs to know whether or not the language is official and what percentage of
the population is speaking the language.

Lastly, Ayuda wants to store information about major cities of each country. Specifically, they
want be able to store the name of the city, if it is the capital of the country, in what region of the
country it resides, and its population.

Conceptual Design

When starting to design a database, you usually have a scenario like the above. You need to think
through what you need to store and why. If you are working with a client, you will likely go back and
forth many times to refine what is necessary to store and what isn't. What you store will be depend-
ent on the application you are building so the database design process is very subjective and context
dependent – there may be many good database designs for the same database.

Once you have a solid idea of what you need to store and why, you try to identify the entities, at-
tributes, and relationships. An entity is a person, place, event, or concept. An attribute is a character-
istic of an entity. Entities will eventually map to tables and attributes will eventually map to columns
of the tables. A relationship is how two entities are connected. Depending on the type of relation-
ship, it will be represented by a column in a table or a table itself.

This process of identifying entities, attributes, and relationships is much like designing classes for
an object-oriented system – the key difference being that the emphasis is on the relationships be-
tween entities instead of the behavior of classes. As in object-oriented programming, you can begin
by identifying what the nouns are and whether they are an entity unto themselves or if they are actu-
ally a characteristic (i.e. an attribute) of some other entity.

In the description of what is needed for Ayuda's world database we can identify lots of nouns
including country, continent, government, leader, population, capital, language, and city. It is fairly

 B.1 Database Design and Definition

obvious that country is an entity with population, gross national product, and life expectancy all being
characteristics of the country. It may be a little more difficult to decide whether or not continent
should be considered its own entity or an attribute of country. To determine if a piece of data should
be stored as an attribute instead of an entity consider if the data: (1) has any characteristics of its own,
and (2) can be stored as a single piece of data (e.g., even though addresses usually don't have any at-
tributes of their own, they are frequently considered entities since an address has a house number,
street name, city, state, zip code, etc.). Since Ayuda doesn’t need to store continent-specific informa-
tion and since a continent can be stored simply by its name, we consider continent an attribute.
Table B.1 presents one way to break down our scenario into entities and attributes.

Entity (real world object) Attributes (characteristics of the object)

countries name, code, continent, GNP, population, life expec-
tancy, government, leader

languages name

cities name, region, population

Table B.1 Entities and attributes in the world database

Next we identify the relationships that connect the entities above. Here is a list of relationships
we can identify between countries, languages and cities as given by our scenario:

• A language is spoken in one or more countries.

• A language is an official language of a country.

• A language is spoken by a percentage of the population of the country.

• A city is in one country.

• A capital of a country is a city.

Logical Design

Our next step is to map entities, attributes, and relationships to tables and columns. As men-
tioned earlier, entities map to tables, attributes map to columns, and relationships map either to tables
or columns depending on the type of relationship. Listing the tables and columns corresponding to
our entities and attributes above, simply means changing the column headings of Table B.1 and re-
naming attributes such that they don’t use spaces (column names cannot have spaces).

Table Columns

countries name, code, continent, gnp, population,
life_expectancy, government, leader

languages name

cities name, region, population

Table B.2 world database schema version 1

The next step is to determine what the primary keys of each table will be. Remember that a pri-
mary key is an attribute that uniquely identifies each row in a table. The primary key for countries
can simply be its county code as that is unique for each country. Similarly, the primary key for
Languages can be its name as there are no two languages with the same name. The trickier table to
pick a primary key for is cities. There could be two cities with the same name (e.g., Paris, France

 Appendix B Database Design

and Paris, Texas). We decide on a composite primary key consisting of name and region as there are
probably no two distinct cities with the same name in the same region. Table B.3 lists the tables and
columns including the proposed primary keys as being underlined column names.

Table Columns (primary keys underlined)

countries name, code, continent, gnp, population,
life_expectancy, government, leader

languages name

cities name, region, population

Table B.3 world database schema version 2 (with keys)

Now to the trickiest part: mapping relationships. There are several kinds of relationships be-
tween entities. Relationships where an entity is only related to only one other entity are the easiest to
map. For example, take the "A city is in a country" relationship. Since a city is associated with only
one country, we can represent this relationship by simply adding a column to cities that references
the country in which the city resides. Similarly, a capital is a kind of city and a country can only have
one capital, so we can add a column to countries that references the City that is its capital.

Now to the relationships involving countries and languages. A country can speak many lan-
guages and a language can be spoken in many countries. Relationships like these where many of one
entity can be associated with many of another entity are stored in a separate "mapping" table that as-
sociates the two entities. We create the languages table and in it store the attributes related to a
language in a country (i.e. whether or not the language is officially recognized and the percentage of
the population speaking the language). Table B.4 adds the relationships discussed.

Table Columns (primary keys underlined, foreign keys in bold)

countries name, code, continent, gnp, population,
life_expectancy, government, leader, capital_name,
capital_region

languages language, official, percentage

cities name, region, population, country_code

Table B.4 world database schema version 3 (with relationships)

We now have a proposed list of tables and columns that properly model the data that Ayuda
needs to store, but there are two tweaks we can make that make it a better schema. The first is that
any time there is a primary key that is made up of more than one column, every table that references
that table must store all of those columns (e.g., countries has to store both the name and region of
its capital). If this entity is referenced many places in the database it is more space efficient to just
propose what is called a surrogate key. This is an extra column that is used to uniquely identify the en-
tity but stores no new information about the entity. For example, we'll introduce a column in
cities named id to identify a city.

Secondly, the information stored in languages is only needed if it is associated with a country,
so all language names will need a country_code column to give them a proper relationship to the
countries table. Table B.5 includes these tweaks.

Table Columns (primary keys underlined, foreign keys in bold)

countries name, code, continent, gnp, population,

 B.1 Database Design and Definition

life_expectancy, government, head_of_state, capital

cities id, name, region, population, country_code

languages country_code, language, official, percentage

Table B.5 world database schema version 4 (tweaks)

Normalization

 A common mistake many people make (including seasoned web developers) when creating a da-
tabase is putting too much information in one big table. For example, for the world database, why
not combine countries and languages into a table like in Table B.6?

name code conti-
nent

gnp popula-
tion

life_expectancy govern-
ment

capi-
tal

lan-
guage

offi-
cial

per-
centage

Argen-
tina

ARG South
America

340238 37032000 75.1 Federal
Republic

69 Spanish T 96.8

Argen-
tina

ARG South
America

340238 37032000 75.1 Federal
Republic

69 Italian F 1.7

Argen-
tina

ARG South
America

340238 37032000 75.1 Federal
Republic

69 Indian F 0.3

Table B.6 CountrySpeak combined table (poor design)

This design is redundant. For every country that speaks many languages (and most do), you will
be repeating the name, code, continent, GNP, population, life expectancy, government, head of state,
and capital for the country for as many languages as the country speaks.

Repeating data is bad for two reasons. The first is quite obvious: space. The less you repeat the
less space you take in the database. Well, these days large hard drives are pretty cheap so for small or
mid-sized databases, maybe this isn't such a compelling argument.

A second reason repetition is bad that is slightly less obvious, but even more important: data con-
sistency. When you have repeated data in a table it is very easy to have inconsistencies when you in-
sert, update, and delete data. For example, you could easily mistype inserting 3703200 as the popula-
tion for one of the rows above. The difference between 37032000 and 3703200 is huge. Now when
an Ayuda user wants to know the population of Argentina, which value should they trust (both seem
like viable populations for a country)? An update example: when Argentina elects a new president, an
Ayuda user could easily forget to update all rows, again leaving the database in an inconsistent state.
Lastly, a deletion example: Ayuda decides they no longer want to keep information about languages
spoken in Argentina and so they delete all rows. Unintentionally, they have deleted all information
about Argentina even though they meant only to delete information about languages spoken in Ar-
gentina. In a world where "Data is King", inconsistency is something to be avoided if at all possible.

How can we minimize data duplication and inconsistencies in our schema? The answer is a
technique called normalization. There are various levels of normalization and the higher the level the
higher the guarantee of consistency. We'll go through the first three levels of normalization; once
you get to the third level you are guaranteed to be free of most update, insert, and deletion errors.

A table is at the first level of normalization, also called First Normal Form, if and only if there are
no repeated rows (each row has some unique information) and there are no multi-valued columns. It
is not uncommon for those who don't have much experience with relational databases to create a
database that stores information like in Table B.7.

 Appendix B Database Design

name code conti-
nent

gnp popula-
tion

life_expectancy gov-
ernment

head_of_state capi-
tal

Languages

Argen-
tina

ARG South
America

340238 37032000 75.1 Federal
Republic

Christina
Fernandez

69 Spanish (T,
96.8),
Italian (F,
1.7), Indian
Languages
(F, 0.3)

Table B.7 Design for CountrySpeak that is not even in First Normal Form

Fields in tables are not meant to store lists. They are meant to store information about a single, discrete
piece of information. Here are a few of the downsides of storing lists in a multi-valued column:

• You might not have anticipated enough space if the list grows too large.

• The basic INSERT, UPDATE, and DELETE statements are not sufficient to manipulate multi-
valued columns.

• Web programmers will have to do a lot of string parsing to get information that they need
from the list.

• Table name, primary key, and column name do not map to a specific piece of data.
A table is at the second level of normalization, also called Second Normal Form, if and only if it

is in First Normal form and the primary key determines all non-key column values. Table B.6 is in
First Normal Form, but is not in Second Normal Form because the country code does not determine
the value for language, official, or percentage. As discussed above, a table that is not in Second
Normal Form is subject to errors on insert, update, and delete.

A table is at the third level of normalization, also called Third Normal Form, if it is in Second
Normal Form and all columns are directly dependent on the primary key. A way to remember what
Third Normal Form means was given by Bill Kent: every non-key attribute "must provide a fact
about the key, the whole key, and nothing but the key so help me Codd" (Codd invented the theo-
retical basis for relational databases). All tables in the world database schema proposed in Table B.5
is in Third Normal Form as all non-key columns depend on the primary key.

An example of a table in Second Normal Form (but not in Third Normal Form) would be if we
added the head of state's date of birth to the countries table. This is because the date of birth of
the head of state relies on the person that is head of state, not on the country. The scenario where
this could result in a data inconsistency is if the same person happened to be head of state in two
countries at the same time (sounds ridiculous but could be viable if one country invades another),
there is nothing to stop the head of state to have two different dates of birth in the two rows. In or-
der to store this additional piece of information and stay in Third Normal Form, we would make a
HeadOfState table in which we would store the name and date of birth and then countries would
link to this table through a foreign key. Table B.8 summarizes the three levels of normalization.

First Normal Form No duplicate rows and no multi-valued columns (i.e. columns of lists)

Second Normal Form In First Normal Form and primary key determines all non-key columns

Third Normal Form In Second Normal Form and all columns are dependent on primary key

Table B.8 Three levels of normalization

Physical Design

At this stage of the database design process, you should have a good idea of what your tables,
columns, and keys will be and that the structure of the database is safe from data duplication and in-
consistencies. The last step in the design process is to figure out how the database will physically be

 B.1 Database Design and Definition

configured for the hardware on which it runs. This includes choosing the data types of each table
field and optimizing the database. Database tuning and optimization is an advanced topic and is out
of the scope of this book, so in this section we will focus on choosing data types for fields.

The data types that are available to you to use are RDBMS-dependent, so we will focus on the
data types that MySQL offers. Choosing the appropriate data type for each field in a database is im-
portant both in terms of correctness and speed. For example, if a field is always going to be a num-
ber, don't represent it as a string data type. MySQL offers a number of data types broken into three
categories: numeric, date/time, and strings. Table B.9 lists a few of the most common types.

MySQL Data Type Description

Numeric (http://dev.mysql.com/doc/refman/5.0/en/numeric-types.html)

INTEGER (or INT) A 4-byte integer whose signed range is from -2147483648 to 2147483647.

BIGINT An 8-byte integer whose signed range is from -9223372036854775808 to
9223372036854775807.

FLOAT(M, D) A 4-byte floating-point number whose display length is defined by M (de-
fault 10) and number of decimals is defined by D (default 2). Decimal pre-
cision can go to 24 binary digits (roughly 7 decimal places) for a FLOAT.

Date and Time (http://dev.mysql.com/doc/refman/5.0/en/date-and-time-types.html)

DATE A date in YYYY-MM-DD format, between 1000-01-01 and 9999-12-31

DATETIME A date and time combination in YYYY-MM-DD HH:MM:SS format, be-
tween 1000-01-01 00:00:00 and 9999-12-31 23:59:59.

String Types (http://dev.mysql.com/doc/refman/5.0/en/string-types.html)

CHAR(M) A fixed-length string between 1 and 255 characters in length (for example
CHAR(5)), right-padded with spaces to the specified length when stored.

VARCHAR(M) A variable-length string between 1 and 255 characters in length.

BLOB or TEXT A field with a maximum length of 65535 characters. BLOBs are "Binary
Large Objects" and are used to store large amounts of binary data, such as
images or other types of files. Fields defined as TEXT also hold large
amounts of data; the difference is that sorts and comparisons on stored
data are case sensitive on BLOBs and are not case sensitive in TEXT fields.

ENUM A string object with a value chosen from a list of allowed values enumer-
ated explicitly in the column specification at table creation time.

Table B.9 Common MySQL data types

 Appendix B Database Design

Let's look at a few of the fields in the countries table of the world database to get an idea of
how data types for fields should be chosen. A country's name is a string of various lengths so we
choose VARCHAR. To determine the length of the field we ask Ayuda what is the longest name of a
country name they want to store information on. Their answer is: South Georgia and the Sandwich
Items. This name is 44 bytes long (each character is 1 byte). To be safe we make the data type of the
country name VARCHAR(52). The country code is also of string type and is guaranteed to be 3 letters
long so we will make it of CHAR(3) type.

We know the value in the continent field should be restricted to a list of values for continents,
but there are a couple of ways to classify continents. After speaking with Ayuda, they say they want
the value of the continent field to be one of Asia, Europe, North America, Africa, Oceania, Antarc-
tica, or South America. So the data type of continent will be ENUM('Asia', 'Europe', 'North
America', 'Africa', 'Oceania', 'Antarctica', 'South America').

Ayuda wants to store the GNP of a country in terms of millions of dollars. The maximum
amount for a GNP can go into the trillions, so we can't use a regular INTEGER. One option is to use
the BIGINT data type which will definitely store the range of values needed for GNP, but is 8 bytes
long. Since Ayuda will be storing GNP at the accuracy of millions of dollars, the last six digits of any
GNP stored will be zeroes. This is sort of useless information, so instead, we can use the default
FLOAT type and use only 4 bytes to store the GNP.

Final World Schema

The final schema for the world database is shown in Table B.10 and Table B.11.

countries

Field Type

name VARCHAR(52)

code CHAR(3)

gnp FLOAT

population INTEGER

life_expectancy FLOAT(3,1)

continent ENUM('Asia','Europe','North America','Africa',
'Oceania','Antarctica','South America')

government VARCHAR(45)

head_of_state VARCHAR(60)

capital INTEGER

Table B.10 Final countries table for world database
(primary keys underlined; foreign keys bolded)

 B.1 Database Design and Definition

 cities languages

 Field Type Field Type

 id INTEGER country_code CHAR(3)

 name VARCHAR(35) language VARCHAR(30)

 region VARCHAR(20) official ENUM(‘T', ‘F')

 population INTEGER percentage FLOAT(4,1)

 country_code CHAR(3)

Table B.11 Final cities and languages tables for world database
(primary keys underlined; foreign keys bolded)

B.1.2 Data Definition Language

Phew! After all that work figuring out what the columns and tables should be for the world da-
tabase, we are finally ready to actually define them using SQL's Data Definition Language. In
MySQL to create database objects you use the CREATE keyword and to delete database objects you
use the DROP keyword. The use of these is normally only permitted for users with high access levels
on MySQL server; you might not have permission to use them on your school's server. The syntax to
create a new database is shown in Example B.1.

CREATE DATABASE databaseName

Example B.1 Syntax for CREATE DATABASE statement

Just as with deleting table rows, you want to be careful when deleting a database because all its in-
formation is lost when you delete it. The syntax to delete a database is shown in Example B.2.

DROP DATABASE databaseName

Example B.2 Syntax for DROP DATABASE statement

Example B.3 creates a database called test and then deletes it in a MySQL client window. The
same statements could be performed through a PHP script using the CREATE and DROP statements as
arguments to mysql_query just as you would any other SQL statement.

mysql> CREATE DATABASE test;
Query OK, 1 row affected (0.00 sec)

mysql> SHOW databases;
+--------------------+
| Database |
+--------------------+
| imdb |
| imdb_small |
| test |
+--------------------+
11 rows in set (0.00 sec)

 Appendix B Database Design

mysql> DROP DATABASE test;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW databases;
+--------------------+
| Database |
+--------------------+
| imdb |
| imdb_small |
+--------------------+
10 rows in set (0.00 sec)

Example B.3 Using CREATE DATABASE and DROP DATABASE statements

To create a table in a database, you should first select the database in which you want to create
the table using the USE command in the client window or the mysql_select_db in a PHP script.
The CREATE TABLE statement requires:

• The name of the table

• The names of the columns

• Definition columns for each column, including data type of the column and any optional
column properties

The syntax to create a database table is shown in Example B.4.

CREATE TABLE tableName (
column1Name column1Type [column1Properties],
column2Name column2Type [column2Properties],
…,
columnNName columnNType [columnNProperties],
PRIMARY KEY (priKeyCol1, priKeyCol2, …, priKeyColN),
FOREIGN KEY (columnMName) REFERENCES otherTable (otherColumn))

Example B.4 Syntax for CREATE TABLE Statement

There are a number of column properties that you can use, but we'll only introduce you to a few.
The first is PRIMARY KEY. If the primary key of a table only consists of one column you can use this
column property to define a column as being the primary key. If you have a primary key that consists
of more than one column you have to use the clause at the bottom. In Example B.5, we define the
countries and cities tables using the PRIMARY KEY column property, but for the languages
table we have to use the PRIMARY KEY clause.

Another frequently used column property is NOT NULL which tells the database that a user can-
not insert a row into this table where the value for this column is NULL.

The AUTO_INCREMENT column property can be used with INTEGER and FLOAT types.
AUTO_INCREMENT values should not be designated on an INSERT – instead the database automatically
assigns the field a value starting at 1 and increments the field by 1 for each additional row added to
the table. AUTO_INCREMENT is typically used on surrogate keys.

 Example B.5 shows how to create the world database and its tables in a MySQL client.

 B.1 Database Design and Definition

mysql> CREATE DATABASE world;
Query OK, 1 row affected (0.00 sec)

mysql> USE world;
Database changed

mysql> CREATE TABLE countries (
 -> name VARCHAR(52) NOT NULL,
 -> code CHAR(3) PRIMARY KEY,
 -> gnp FLOAT,
 -> population INTEGER,
 -> life_expectancy FLOAT(3, 1),
 -> continent ENUM('Asia','Europe','North
America','Africa','Oceania','Antarctica','South America') NOT NULL,
 -> government VARCHAR(45),
 -> head_of_state VARCHAR(60),
 -> capital INTEGER,
 -> FOREIGN KEY (capital) REFERENCES City(id));

mysql> CREATE TABLE cities (
 -> id INTEGER AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(35) NOT NULL,
 -> region VARCHAR(20),
 -> population INTEGER,
 -> country_code CHAR(3) NOT NULL,
 -> FOREIGN KEY (country_code) REFERENCES Country(code));

mysql> CREATE TABLE languages (
 -> country_code CHAR(3),
 -> language VARCHAR(30),
 -> official ENUM('T', 'F'),
 -> percentage FLOAT(4, 1),
 -> PRIMARY KEY (country_code, language),
 -> FOREIGN KEY (country_code) REFERENCES Country(code));
Query OK, 0 rows affected (0.00 sec)

Example B.5 Creating the world database

There are many more useful statements and components of the MySQL Data Definition Lan-
guage that is out of the scope of this book. To learn more visit the MySQL Documentation for Data
Definition Statements at http://dev.mysql.com/doc/refman/6.0/en/sql-syntax-data-definition.html

References

• Wikipedia - Database design: http://en.wikipedia.org/wiki/Database_design

• Wikipedia - Data Definition Language: http://en.wikipedia.org/wiki/Drop_(SQL)

• Database Design for Mere Mortals:
o http://www.amazon.com/Database-Design-Mere-Mortals-Hands/dp/0201752840/

• Database Modeling and Design: Logical Design:
o http://www.amazon.com/Database-Modeling-Design-Kaufmann-

Management/dp/0126853525/

