__ previousSiblings()

9.1 The Prototype JavaScript Library 337

ancestors()

parentNode

T

Element

nextSiblings()

l

childElements()

descendants()

Figure 9.1 An element and its neighboring nodes

Method Name

Description

ancestors()

returns an array of the object's ancestors i the DOM tree: parent,
grandparents, ...

siblings() returns an array of all siblings of this element (elements only)

previousSiblings(), returns an array of all sibling elements betore or after this element

nextSiblings()

previous() returns the sibling prior to or after this element (elements only),

previous (selector) optionally matching the given CSS selector; if no previous or next

next() sibling 1s found undefined 1s returned

next (selector)

adjacent (selector) returns an array of all siblings of this element that match the given
CSS selectox(s)

childElements() returns an array of this element's children (elements only)

descendantOf(element)

returns true if this element 1s a child, grandchild, etc. of element
in the page's DOM tree

descendants()

returns an array of the object's children, grandchildren, ete.

down (selector)
down (selector, index)

returns the element's first (or indexth) descendant that matches
the given optional CSS selector; if no selector 1s given all descen-
dants are constdered

up (selector)
up (selector, index)

returns the element's first (or indexth) ancestor that matches the
grven optional CSS selector; 1f no selector 1s given all descendants
are considered

Table 9.8 Prototype's DOM node traversal methods

For example, if you have an element on your page with an id of main and you want to change

the text of its neighbors to end with an exclamation point, you could wiite the code 1 Example 9.10.




338 Chapter 9 Events and the Prototype Library

var siblings = $("main").siblings();
for (var i = ©; i < siblings.length; i++) {
siblings[i].innerHTML += "!";

} J

Example 9.10 Processing siblings using Prototype's DOM node methods

Notice that siblings, like the rest of Prototype's DOM additions, 1s a method and must be
called with parentheses, unlike the built-in DOM properties firstChild, nextSibling, etc.

Selecting Groups of Nodes

In the previous chapter we saw that you can call document.getElementsByTagName to get an
array of DOM elements using a given HTML tag. This was usetul for looping over many elements
and processing them. We used this technique in our searchable fan site example 1n the DOM chapter.

But the abulity to process all nodes with a given tag 1s not very versatile. Often we want to proc-
ess a group of nodes that are related in some other way, such as all elements that have the urgent
CSS class, or all 11 items that are mnside an 0l mside a particular div on the page. The existing DOM
doesn't make 1t easy to do these kinds of manipulations. But Prototype comes to our rescue.

Prototype adds some methods to the document object (and to all other DOM objects) for ac-
cessing groups of nodes. The most useful of these methods 1s listed 1n Table 9.9. The $$ function 1s
especially usetul for processing all elements that match a given CSS selector. You can set up your
page so that the elements of interest use a particular class, and then target that class.

Method Name Description
select(selector) returns array of all DOM elements that match the given
(ak.a. $$ when called on document) CSS selector strng, such as "div#sidebar > 1i"

Table 9.9 Prototype's DOM selection methods

But even more usetul 1s Prototype's ability to select a group of elements based on CSS selector
strings. Recall that a selector 1s the part of a CSS rule that comes before the { brace, that determines
which parts ot the page the rule will affect. Selectors can be simple, such as "p" to select all para-
graphs, or complex, such as "div#topmenu > img.banner" to select all img elements with a class
of banner that reside directly mnside the div element with an id ot topmenu.

Prototype's mughty select method, which has been added to the document object as well as to
every other DOM object, accepts a string parameter representing a CSS selector, and returns an array
of all DOM objects for elements that match that selector. The selector you pass 1s a string that fol-
lows the same syntax as a CSS selector does. For example, it you want to hide all paragraphs with the
class of announcement that are contained within the div with id of news, you could write:

var paragraphs = document.select("div#news p.announcement");
for (var i = @; i < paragraphs.length; i++) {
paragraphs[i].hide();

Since you often want to call select on the overall document object, and to reduce typing, Pro-
totype introduces a $$ function that is a shorthand for document.select. You can select a group of
elements using $$ even 1t your CSS file has no style rule for that group. For example, it 1s tine to use
$$ to select all paragraphs even it your CSS file does have a rule for the p tag. (We jokingly refer to
$$ as the "mo' money" function with our students.) For example, Example 9.11 accomplishes the
same thing as the previous code, hiding the same group of paragraphs.




9.1 The Prototype JavaScript Library 339

var paragraphs = $$("div#news p.announcement");
for (var i = @; i < paragraphs.length; i++) {
paragraphs[i].hide();

Example 9.11 Selecting elements with $$

$$ can also be used in a window.onload handler to attach event handlers to a group of ele-
ments. For example, the code 11 Example 9.12 listens to clicks on all buttons with a class of control
directly inside of the section with id of game.

window.onload = function() {
var gameButtons = $$("#game > button.control”);
for (var i = @; i < gameButtons.length; i++) {
gameButtons[i].onclick = gameButtonClick;
}
}s

function gameButtonClick() {

}...

Example 9.12 Attaching event handlers with $$

$$ eftectively replaces all of the other multi-element selection techniques and 1s simpler and more
pleasant to use. Therefore 1t's our recommended way of accessing groups of nodes, and it's what we'll
use 1n our examples in the rest of the textbook.

A . . ] .
Many students mak§'51mple m145takes Wheq first using P_Lototype s $$ O IET O N2
tunction. For example, 1t's easy to forget to wute . or # in front of a de- o AN
. . Misusing $$
sired class or id that you want to select. Example 9.13 shows two at-

tempts to use $$ to fetch all elements with the class of control. But the first call will return an
empty array, because there 1s no element with a tag ot control. The second line shows a correct call.

var gameButtons
var gameButtons

$$("control”); // incorrect
$$(".control"); // correct

Example 9.13 Common error: Forgetting . or # when using $$

Another important thing to remember 1s that $$ does not return the same type of value as $.
While $ returns a single DOM element object, $$ returns an array of the elements 1t matched. It you
want to do something to those DOM objects, you must loop over the results and process each one.
The first line in Example 9.14 mcorrectly attempts to set buttons with a class of control to have
red text. The code atterward correctly loops over each element and applies the style to it.

$$(".control").style.color = "red"; // incorrect

var gameButtons = $$(".control");
for (var i = @; i < gameButtons.length; i++) {
gameButtons[i].style.color = "red"; // correct

}

Example 9.14 Common error: Treating $$ return value as a single element




340 Chapter 9 Events and the Prototype Library

Even if the selector you pass to $$ matches only a single element, the result 1s still returned as an
array (an array containing just one element). You must either loop over the elements returned (if
there will be many of them) or access elements at particular indexes. If you're sure the array will con-
tain just one element, you can just directly refer to its element [@], as shown 1n Example 9.15.

| $$(".control")[@].style.color = "red"; // correct

Example 9.15 Modifying a single element using $$

9.1.6 Prototype and Forms

Prototype includes several usetul teatures for dealing with HTML forms. Simce a common
JavaScript usage pattern 1s to get a DOM object for a form control and then examine or set its value,
Prototype also includes a variant of $ called $F. The $F function accepts a form control's id string as
its parameter and returns the value of that control. For example, for an input text control, $F re-
turns the text typed into that text box. Example 9.16 shows the syntax for the $F function.

| var name = $F("id");

Example 9.16 Syntax template for accessing form control values

$F does not provide any tunctionality that cannot be achieved through other means such as the $
tunction and the value property, but 1t 1s a concise way to get a form control's value.

Prototype also adds a set of additional methods to every form control that are useful for manipu-
lating the control and its value. Several of the usetul methods are shown 1n Table 9.10. For example,
if a form has a text box with an id of tip and you want to clear the box's text if 1t represents an inte-
ger less than 10, you could write code such as the following:

if ($F("tip") < 10) {
$("tip").clear(); // erase text if number typed is too small
}

Method Name Description
activate() gives the control focus and selects its text, 1t any
clear() removes any text from the control
disable(), enable() disables or enables the form control's value from bemng changed
focus() gives the control focus
getValue() returns the current value of the control (usually a string, but an
array of strngs for multiple-select list boxes); a longhand for $F
present() returns true if there 1s any text typed mnto the control
select() selects/highlights the text in the control

Table 9.10 Prototype form control element methods



9.1 The Prototype JavaScript Library

Self-Check

1.

What are the contents of the following array after the tollowing code runs?

341

var nums = [2.7, 5.1, 18.6, 5.1, 2.7, 16, 27];
nums = nums.uniq().without(16);
for (var i = @; i < nums.length; i++) {

a[i] = a[i].round();

if (a[i] % 2 == 0) {

a[i] = a[i].toColorPart().times(3);

}

¥

Suppose we have an element with id ot box. How would we use Prototype to make this

element mvisible on the page? How would we delete the element from the page?

Suppose we have an element with id of box. How would we use Prototype to check whether

the element's font 1s bold, and if so, to also make the font become italic?

In Prototype's terminology, what 1s the difterence between a parent node and an ancestor

node? Between a child and a descendant?

How would you use Prototype to retrieve the DOM objects for all paragraph (p) elements on
the page that have the CSS class ot story that are imnside the div with id of container?




