162 Chapter 5 PHP for Server-Side Programming

5.4 Advanced PHP Syntax

In these sections we'll see more advanced PHP syntax for elements such as functions, arrays, and
tiles. These will allow us to create larger, well-structured programs that interact with interesting data.

5.4.1 Functions

Like functions and methods in C, C++, and Java, a PHP function 1s a named group of statements
that can be executed many times. PHP functions can accept parameters, which are declared by wiit-
ing their names with dollar signs in front; no types are declared. Example 5.33 shows the syntax.

PHP functions can also return values. To return a value from a function, place a return state-
ment in the function's body, using the syntax shown i Example 5.34. For example, the function
shown in Example 5.35 computes the slope of a line based on two points (x7, y1), (x2, y2).

function name($parameterName, ..., $parameterName) {
statements;

}

Example 5.33 Syntax template for function declaration

return value;

Example 5.34 Syntax template for return statement

function slope($x1, $y1, $x2, $y2) {
return ($y2 - $yl) / ($x2 - $x1);
}

Example 5.35 Function declaration

As we've already seen eatlier in this chapter, functions are called by wrting the function's name,
and the actual parameter values between parentheses separated by commas. For example, to call the
quadratic function we just declared, you could wiite the code shown 1 Example 5.36.

$varl = -2;
$var2 = 3;
$root = quadratic(1, $varl, $var2 - 2); # $root stores 1

Example 5.36 Function call

You can specity default parameter values to make a function's parameter optional. The syntax for
doing so 1s to declare the parameter with an equals sign followed by the detault value to use if none 1s
passed. Any parameters with default values must appear at the end of the list of parameters. The gen-
eral syntax 1s shown 1 Example 5.37, and a function utilizing the syntax 1s shown mn Example 5.38.
The print_separated function uses a comma and space as the default separator string when print-
ing 1ts output 1t the caller passes only one parameter.

function name(..., $parameterName = value, $parameterName = value) {
statements;

}

Example 5.37 Syntax template for default parameter values

5.4 Advanced PHP Syntax 163

function print_separated($str, $separator = ", ") {
if (strlen($str) > 0) {
print $str[0];
for ($i = 1; $i < strlen($str); $i++) {
print $sep . $str[$i];
}

}
}

Example 5.38 Function with default parameter value

You can call the print_separated function two ways: passing one parameter for a string, in
which case its letters will be printed separated by commas and spaces; or passing a second parameter
for the text to place between the string's characters. Example 5.39 demonstrates both kinds of calls.

print_separated("hello"); #t h, e 1, 1, o
print_separated("hello", "-"); # h-e-1-1-o0

Example 5.39 Function calls using default parameter values

Value vs. Reference Parameters

Normally parameters are passed by value in PHP, meaning that the actual parameter values
passed are copied mto the function's formal parameters during each call. The impact of this 1s that a
tunction cannot change the values of any vanables that are passed in to 1t. Notice that the code in the
tunction 1n Example 5.40 is not able to modity the value of $x from the main program; $num's value
1s just a copy of $x's value. They are not linked to each other, so $x 1s still 5 after the call.

function make_bigger($num) {
$num = $num * 2;

}

$x = 5;
make_bigger($x);
print $x; #5

Example 5.40 Value parameter

Parameters can also be passed by reference, which causes the function's parameter to be an alias or
link to the onginal parameter passed from the main program. This means that 1f the function changes
its parameter value, the caller will also see the change 1n 1ts own parameter. A reference parameter 1s
specified by placing a & before the $ in front of its name. In Example 5.41, parameter $num 1s a refer-
ence, meaning that when it 1s doubled, $x passed from the main program also doubles.

function make_bigger(&$num) {
$num = $num * 2;

}

$x = 5;
make_bigger($x);
print $x; # 10

Example 5.41 Reference parameter

164 Chapter 5 PHP for Server-Side Programming

Reference parameters can be very useful in some situations. However, overusing them can lead
to abuse of them and can make code more confusing, so we encourage you to limit them to where
they are truly useful. For example, 1 the preceding examples, returning the doubled value would have
wotked just as well and would have been easter to understand than using a reterence parameter.

Scope

Every vanable has a scgpe, or a range of the program where 1t 1s accessible. Variables declared out-
stde of any function have glhbal scope and can be seen throughout the program. Variables defined -
stde a function have /ocal scope and exist only in that function. Unlike 1n other languages such as Java,
PHP has no narrower scope than function-level. For example, 1t you declare a vanable inside an if
statement or loop, the vanable 1s destroyed not when that loop ends but when the function returns.
This can sometimes lead to bugs where varables are still alive that you assume would have disap-
peared. Example 5.42 shows a brief example of two variables whose values live on to be printed at
the end of a function.

function scope_example() {
for ($1i = 0; $i < 10; $i++) {
print "Hello\n";
$x = 42;
}

$1 and $x are still alive here
print "i = $i, x = $x\n"; #i=10, x = 42
}

Example 5.42 Function-level scope of variables

To avoid name collisions between local and global varables, PHP requires functions to explicitly
declare when they want to access global varables. Otherwise any tune a function's code refers to a
variable, even one that has not yet been declared, PHP treats the variable as local. To access a global
variable within a function, use a global declaration statement at the top of the function's body, using
the syntax shown 1 Example 5.43.

global $variableName;

Example 5.43 Syntax template for global variable access

In Example 5.44, the code accesses and modifies the value of a global variable named $show.
Without the global declaration, $show would not be visible mside the downgrade function.

$show = "Star Trek"; # global

function downgrade() {
global $show;
$suffix = " Voyager"; # local
$show = "$show $suffix";
print "$show\n";

}

Example 5.44 Global variable

Reterning to globals should not be used as a substitute tor proper parameter passing. Normally
globals contain important values meant to be considered constants to be used throughout your code.

5.4 Advanced PHP Syntax 165

Also note that vanable scope 1s completely unrelated to the start and end ot PHP <?php ... ?>
blocks, so a variable declared in an earlier PHP block 1s also visible in later PHP blocks in the same
page, as shown 1 Example 5.45. In that example, the variable $firstname is declared in the first
PHP block, and then 1t 1s used successtully 1n a later block.

<?php
$firstname = "Victoria";
?>

<p>Hello, world!</p>

<?php

$firstname is still in scope here
$fullname = "$firstname Kirst";

?>

<p>Your full name is <?= $fullname ?></p>

Hello. world!

Your full name is Victoria Kirst

Example 5.45 Scope across PHP blocks

5.4.2 Including Files

PHP has a function named include that you can use to mject a file's contents into your page. If
the injected file's contents are HTML code, the HTML 1s displayed on your page. It its contents are
PHP code, the code will be executed, and any variables or tunctions it declares will now be available
to any of your subsequent code. The following 1s the syntax for the include function:

include("filename");

Example 5.46 Syntax template for include statement

You can use include as a powertul way to eliminate redundancy at the tile level. For example,
you may have several pages that have a common header or share a common large block of content.
Or you may have wutten useful utility functions and code that you'd like to call 1 several pages. In
etther case, you can place the common content into a separate file and have each page include 1t.

Suppose you have two pieces of important HTML and PHP code whose content you want to in-
clude 1n several pages on your overall web site. The first reused piece of code 1s a quote from a poem,
and a function called piglatin that you want to call in several pages. You can put this partial web
content mnto a tile such as partiall.php shown 1n Example 5.47.

<blockquote><p>
I think that I shall never see
 A poem lovely as a tree
</p></blockquote>

<?php
function pigLatin($word) {

return substr($word, 1) . "-" . $word[0] . "ay";
}

?>

Example 5.47 Partial web page, partiall.php

