
 83

Chapter 4 Page Layout

84 Chapter 4 Page Layout

Introduction
In this chapter we'll learn more HTML and

CSS with a focus on customizing the layout of
web pages. Custom layouts allow us to break the
browser's somewhat boring default pattern where
each block element appears below the last.

The core of web page layout is a set of CSS
rules and properties collectively referred to as the
CSS box model. Learning about the box model
will enable us to change the size and position of
elements and the gaps and margins between them.

We will also learn about "floating" elements
which position themselves at the left or right edge
of a page. Another useful layout tool is absolute
and fixed positioning, which allow you to put
elements anywhere on the page that you like.

Before studying layout and the box model,
we'll first need to learn some more CSS and
HTML to give identification labels to particular
elements and to group elements together. This
will enable us to select particular elements or
groups of elements, so that we can apply a layout
style to precisely the desired part of the page.

Unfortunately Internet Explorer does not
properly support HTML and CSS layout stan-
dards. One section of this chapter is devoted to
mentioning several prominent problems in IE
and learning about ways to work around them.

This chapter contains a larger "Case Study"
example of a site for an ultimate Frisbee club.
We'll come up with a design for this site's layout
and implement it over the course of this chapter.

Chapter Outline
4.1 Styling Page Sections
4.1.1 Page Sections (div)
4.1.2 Spans of Text (span)
4.1.3 CSS Context Selectors

4.2 Introduction to Layout
4.2.1 The CSS Box Model
4.2.2 Finding Problems with Firebug

4.3 Floating Elements
4.3.1 The float Property
4.3.2 The clear Property
4.3.3 Making Floating Elements Fit
4.3.4 Multi-Column Floating Layouts

4.4 Sizing and Positioning
4.4.1 Width and Height
4.4.2 Positioning
4.4.3 Z-indexing
4.4.4 Element Visibility

4.5 Internet Explorer Layout Quirks
4.5.1 Workarounds for IE Flaws

4.6 Case Study: Ultimate Frisbee
4.6.1 Page Sections and Styles
4.6.2 Page Layout
4.6.3 Final File Contents

 4.1 Styling Page Sections 85

4.1 Styling Page Sections
Let's consider the task of making a web site for an ultimate Frisbee club we've formed with our

friends. The site will contain announcements about upcoming matches, news articles about ultimate,
and links to various other useful ultimate sites.

The page has a heading at the top. Announcements will scroll down the center of the page, each
with a styled underlined heading. Some announcements contain images, and we'd like them to hover
to the right of the text. News stories go in boxes on the left, nested within the main section of the
page. A calendar of events appears on the right. Since the calendar and events are important, we'd like
that section always to be visible even when the user scrolls down the page. As the user scrolls the
page, the events calendar should not move. The page's desired appearance is shown in Figure 4.1.

Figure 4.1 Ultimate Frisbee web page, desired appearance

To achieve such a layout, we'll need to be able to group contents of the page into major sections
and apply styles to each section. In our page, the sections are the main central announcements, the
news items on the left, and the calendar on the right. It can be helpful to draw out a rough sketch of
the sections of a page. Figure 4.2 shows a rough sketch of those sections. Before we can create the
Ultimate Frisbee site, we'll need to learn a bit more HTML and CSS. We'll learn new HTML tags to
represent sections of a page and how to write more precise CSS selectors for styling.

Figure 4.2 Frisbee page layout sections

86 Chapter 4 Page Layout

4.1.1 Page Sections (div)
Element div

Description Section of a page (block)

Syntax <div>

 content

</div>

HTML has two elements that are very useful for layout. One of these is div, a block element that
represents a major division or section of a page. The other is span, an inline element that represents a
meaningful span of text. These elements don't have as much specific meaning as an element like ul
or a; they exist mainly to serve as targets of CSS rules. You can apply a style to a region of your page
by wrapping it in a span (if it is a short inline part of the page) or a div (if it is a large section en-
compassing one or more block elements), and then applying CSS styles to that span or div.

The div element is a block element that represents a division or section of a page. When we
write our ultimate frisbee page, we can wrap each major section's group of paragraphs, headings, and
other content in a div. By default, a div has no onscreen appearance, but if we give it a class or id,
we can apply CSS styles to it and its contents as a group. Even if we don't want to apply any styles to
the section of the page, using a div is still a good idea because conceptually it adds a bit of semantic
information about the organization of the page contents. Example 4.1 demonstrates a div.

<div id="main">
 <h1>Marty's Ultimate Page</h1>
 <p>blah blah blah... welcome to my ultimate page!</p>

 <h2>Annual Members Meeting</h2>
 <p>
 The Annual Members Meeting of the Ultimate Players Association
 will take place on Sunday, January 20, ...
 </p>
</div>

#main {
 background-color: #ddffdd;
 font: 12pt "Tahoma", "Arial", sans-serif;
}

Example 4.1 Page sections with div

 4.1 Styling Page Sections 87

4.1.2 Spans of Text (span)
Element span

Description Short section of content (inline)

Syntax content

When we have a short inline piece of text that we want to apply a style to, but none of the exist-
ing HTML elements make sense semantically, we can wrap the text in a span. Like a div, a span has
no onscreen appearance by default, but we can apply CSS styles to it.

For example, notice that the first word of each announcement appears in a larger font. We can
achieve this effect by wrapping those first words in spans and then applying a font style to them.

Also, if you look closely at the desired appearance of the headings on our Frisbee page, they use
white text on a blue background; you might think we should create an h2 style that sets these colors.
But if we do this, the blue background will extend all the way across the page; the desired appearance
is for the blue to appear only behind the text itself. The way to get such an effect is to wrap the head-
ers' text in span elements and apply the color styling to the spans.

<h2>
 Annual Members Meeting
</h2>

<p>
 The Annual Members Meeting of the
 Ultimate Players Association will take place on Sunday, January 20, ...
</p>

.announcement {
 background-color: blue;
 color: white;
}

.firstword {
 font-size: 32pt;
}

Example 4.2 Inline text spans

4.1.3 CSS Context Selectors
Suppose you have an unordered list (ul) full of ultimate frisbee-related news events (each repre-

sented by an li). You decide that you'd like to apply a particular style to each event, such as a yellow
background color and bold font. You don't want this style on every li on the page, just every event
in this particular list.

88 Chapter 4 Page Layout

One way to achieve this would be to create a CSS class and apply it to every item in the list, as in
the following example. This is not an ideal solution, because there could be a large number of items
in the list, and it would be cumbersome and redundant to apply the style to each of them.

 <li class="newsitem">Ultimate frisbee declared an Olympic sport
 <li class="newsitem">George W. Bush hit by frisbee, hospitalized
 <li class="newsitem">Frisbee catches dog
 <li class="newsitem">Study: Frisbee players more wealthy, virile

Example 4.3 Redundant class attributes (don't do this!)

A better way to solve this problem is to place a class on the entire
ul list, then use CSS to target only li items inside that list. We can do
this by using a context selector, which is a selector that only targets an ele-
ment if it is inside some other element. The syntax for a context selector
is shown in Example 4.4.

outerSelector innerSelector {
 property: value;
 property: value;
 ...
 property: value;
}

Example 4.4 Syntax template for context selector

The browser processes such a CSS rule by first looking for elements on the page that match the
outer selector, then looking for elements inside them that match the inner selector. An improved ver-
sion of Example 4.3's code is shown in Example 4.5.

<ul class="newslist">
 Ultimate frisbee declared an Olympic sport
 George W. Bush hit by frisbee, hospitalized
 Frisbee catches dog
 Study: Frisbee players more wealthy, virile

.newslist li {
 background-color: yellow;
 font-weight: bold;
}

Example 4.5 Context selector

Now imagine that we want our ultimate Frisbee news items to use the previous style, but if any
news item has its own sub-list, we don't want the sub-list to have the style. For cases like this, it's pos-

context selector
A CSS rule that applies only to
elements that reside inside
another particular element.

 4.1 Styling Page Sections 89

sible to create a direct context selector that will match only inner elements that reside directly inside the
outer element (as opposed to being nested several elements deep inside it). This is done by placing a >
character between the outer selector and inner selector. The syntax is shown in Example 4.6. The
HTML and CSS code in Example 4.7 shows a set of nested lists that use a direct context selector.

outerSelector > innerSelector {
 property: value;
 ...
 property: value;
}

Example 4.6 Syntax template for direct context selector

<ul class="newslist">
 Ultimate frisbee declared an Olympic sport
 George W. Bush hit by frisbee, hospitalized
 Frisbee catches dog
 Study results on Frisbee players:

 more wealthy
 better looking
 more virile

li {
 background-color: cyan;
 font-weight: normal;
}
.newslist > li {
 background-color: yellow;
 font-weight: bold;
}

Example 4.7 Direct context selector

It's also legal to use * as a wildcard to specify any element. This is most commonly used with
context selectors. For example, if you have a div with an id of banner, and you want to give every
element inside that div a black border (but not give the div itself such a border), you could write:

div#banner * {
 border: 2px solid black;
}

90 Chapter 4 Page Layout

Specificity and Conflicts
In the previous chapter we mentioned that browsers apply various rules of precedence when style

rules conflict. It gets much more complicated when you have class selectors, ID selectors, and con-
text selectors in your CSS file. Consider the HTML and CSS code shown in Example 4.8. All of the
rules apply to the paragraph shown, and they all conflict. Which one will be used?

<div id="top">
 <p class="new">Where do I go?</p>
</div>

div p { text-align: left; }
#top > p { text-align: center; }
p { text-align: right; }
.new { text-align: justify; }

Example 4.8 CSS specificity and conflicts

The answer is that the second rule "wins" in this case because it is
considered to be the most specific. CSS applies rules of specificity to de-
cide which one should win when two or more rules conflict. Each rule's
overall selector is given a score based upon approximately the following
rules. The rule with the highest score wins if there is a conflict.

• Any HTML element mentioned in the rule scores 1 point.
• Any class mentioned in the rule scores 10 points.
• Any ID mentioned in the rule scores 100 points.

Based on these rules, we show the specificity scores for several selectors in Table 4.1.

CSS selector Specificity

p 1 (one HTML element selector)

div > p 2 (two element selectors)

.banner 10 (one class selector)

p.banner 11 (one element and one class selector)

div.box > p 12 (two elements and one class selector)

div.box > p.banner 22 (two elements and two class selectors)

#logo 100 (one ID selector)

body #logo .box p.banner 122 (one ID selector, two classes, two elements)

Table 4.1 Specificity examples

Most web programmers don't have all of these rules of specificity memorized. We just vaguely
remember that IDs are very specific because they target an individual element, so rules with IDs usu-
ally win. Classes are also fairly specific, because paragraphs with class "foo" are less common than all
paragraphs overall. But classes are clearly not as specific as IDs, since a class can apply to several ele-
ments. And plain old elements are the least specific rules of all. So in this way the rules make sense.

specificity
The measure of how tightly a
rule matches a given element;
used to decide which rule to
use in case of a conflict.

 4.1 Styling Page Sections 91

The rule shown in the last chapter still applies here: If two rules with the same selector are given,
or if two rules with the same specificity apply to the same element, the one declared last wins.

For a humorous take on this subject, check out web designer Andy Clarke's page CSS Specificity
Wars, a good explanation of all this using Star Wars characters to represent the different levels of
specificity, linked in our references section at the end of this chapter.

Self-Check
1. What is the difference between a div and a span? Which is more appropriate for each of the

following cases?
a) A few words at the start of each line represent the title of a movie. We want to color

those and make them appear in a different font.
b) Every three paragraphs of the page constitute a section about a particular author.
c) Certain words in our news flashes are very important. We want to emphasize them

with a bold style and red color.
2. Which CSS rule is more general (matches potentially more elements on the page):

a) element1 element2
b) element1 > element2

3. What color (foreground and background) will be used for each element below?

<body>
 <p>
 I'm a paragraph; what color am I?
 </p>

 <div class="central">
 <p>
 I'm another paragraph; what color am I?
 </p>

 I'm a list item; what color am I?

 </div>
</body>

body {
 background-color: yellow;
 color: blue;
}
body > p, ul {
 color: red;
}
.central > li {
 color: green;
}
.central p, .central, ul .central li {
 background-color: cyan;
}

92 Chapter 4 Page Layout

4.2 Introduction to Layout
Browsers use a standard layout for pages. Block elements such as p and h1 are laid out in the or-

der they appear in the document, from top to bottom. Each new block element causes a line break. A
block element's width is equal to the entire page width in the browser. A block element's height is just
enough to fit its text and contents. Within a block element, inline elements and text flow from left to
right, top to bottom, wrapping to the next line as needed (except within certain elements such as
pre). Figure 4.3 illustrates various layouts of block elements, inline elements, and pages.

<body>

 <h1>...</h1>

 <h2>...</h2>

 <p>...</p>

 <h2>...</h2>

 <p>...</p>

 <p>...</p>

</body>

<p>

 Today, 24 hrs only,

 blowout sale! See our

 Products page for info.

</p>

an overall page

Figure 4.3 Block element layout

 4.2 Introduction to Layout 93

4.2.1 The CSS Box Model
A set of rules collectively known as the CSS Box Model describes the

rectangular regions occupied by HTML elements. The W3C CSS specifi-
cation at http://www.w3.org/TR/REC-CSS2/visuren.html describes in
detail the kinds of boxes that exist and how their layout can be manipu-
lated. The W3C's site is a bit of a long read, but it is very complete about
the various layout rules. The main idea is that every element's layout is
composed of:

• the actual element's content area
• a border around the element
• a padding between the content and the border (inside the border)
• a margin between the border and other content (outside the border)

Figure 4.4 Box model diagram

You can think of an element’s box as being like an HTML table with only one cell in it. Figure
4.4 summarizes the box given to each element on the page by the browser.

The true overall width and height of an element onscreen are the following:

• width = content width + left/right padding + left/right border + left/right margin
• height = content height + top/bottom padding + top/bottom border + top/bottom margin

Many new web developers have trouble remembering the difference between padding and mar-
gin. Here's a mnemonic device: The more food you eat, the more padding you get inside your belly.
Padding is inside the border, and margin is outside the border.

Borders
Each element can have a surrounding line called a border. The element's four sides can accept a

border: top, bottom, left, and right. A border has:

• a thickness, specified in px, pt, em, %, or a general width: thin, medium, or thick
• a style, which is one of the following: none, hidden, dotted, dashed, double, groove,

inset, outset, ridge, or solid
• a color (specified as seen previously for text and background colors)

CSS Box Model
The set of rules that governs
the size, shape, spacing, bor-
ders, and margins of page
elements.

94 Chapter 4 Page Layout

Using a variety of border-related CSS properties, you can specify any or all of the three above
items for any or all of the four border regions.

Property Meaning

border all properties of all four borders

border-color,
border-width,
border-style

color/thickness/style of all four borders

border-bottom,
border-left,
border-right,
border-top

all properties of bottom/left/right/top border

border-bottom-color,
border-bottom-style,
border-bottom-width,
border-left-color,
border-left-style,
border-left-width,
border-right-color,
border-right-style,
border-right-width,
border-top-color,
border-top-style,
border-top-width

specific properties of border on a particular side

border-collapse sets whether a table’s borders are collapsed into
a single border or detached (default)

Table 4.2 Border CSS properties

Each side's border properties can be set individually or as a group. If you omit some properties,
they receive default values (e.g. border-bottom-width in the following example). Example 4.9 sets
several border properties of level 2 headings.

 4.2 Introduction to Layout 95

<h2>I'm HEADING your way!</h2>

h2 {
 border: 5px solid red;
 border-left: thick dotted #cc0088;
 border-bottom-color: rgb(0, 128, 128);
 border-bottom-style: double;
}

Example 4.9 Borders

In the Tables section of the HTML chapter we mentioned that there were better ways of styling
table borders other than setting the table element's border attribute. All the above CSS properties
can be used to put a border around a table and table cells. One in particular applies only to tables:
border-collapse. By default, if a table has borders on both the table and the cells within the table,
you will see double borders as in Example 4.10. border-collapse merges table borders into one
border as shown in Example 4.11.

table, td, th {
 border: 2px solid black;
}

Example 4.10 Table with borders

table, td, th {
 border: 2px solid black;
 border-collapse: collapse;
}

Example 4.11 Table with collapsed borders

96 Chapter 4 Page Layout

Padding

Property Meaning

Padding padding on all four sides

padding-bottom, padding-left,
padding-right, padding-top

padding on a particular side

Table 4.3 Padding CSS properties

Padding gives blank space between the inline contents of an element and its border. As with bor-
ders, padding can be applied to any of the following four regions: bottom, left, right, and top. Pad-
ding is specified simply as a size, in the standard CSS size units such as px, pt, em or %. Example 4.12
sets padding on several elements. Notice that the padding is inside the element's border and shares
the background color of the element.

<h1>This is an h1</h1>
<h1>This is another h1</h1>
<h2>This is an h2</h2>
<h3>This is an h3</h3>
<h3>This is another h3</h3>

h1 { padding: 1em; background-color: yellow; border: 3px solid black; }
h2 { padding: 0em; background-color: #BBFFBB; }
h3 { padding-left: 200px; padding-top: 30px; background-color: fuchsia; }

Example 4.12 Padding

 4.2 Introduction to Layout 97

Margins

Property Meaning

margin margin on all four sides

margin-bottom, margin-left,
margin-right, margin-top

margin on a particular side

Table 4.4 Margin CSS properties

A margin gives a separation between neighboring elements. As with padding, a margin is specified
as a size, and can be set on any or all of the four sides of the element. Example 4.13 sets several mar-
gins. Notice that the margins are outside the element, and therefore they're always transparent; they
don't contain the element's background color.

<p>This is the first paragraph</p>
<p>This is the second paragraph</p>

p {
 margin: 2em;
 background-color: yellow;
}

Example 4.13 Margins

Many block elements already receive default margins if you don't explicitly set them. For exam-
ple, many browsers render paragraphs and lists with approximately a 1em top and bottom margin.

One subtlety about margins is that the overall web page body usually
has a margin of its own. A common request is to create a page whose
content begins flush against the top/left corner of the page. To do this,
create a style with body as its selector that sets the margin width to 0px.

When one block element appears below another, the two elements' top and bottom margins are
combined, a phenomenon called margin collapse. Their shared margin is the larger of the two individual
margins.

A classic web programming hack from the '90s that sadly is still

around today is to use a "spacer" image to achieve horizontal or vertical
separation between elements. This hack comes from the days when CSS
wasn't as mature, so it wasn't easy to space elements with a margin.

The idea was to create a tiny invisible GIF image, and then to place it on the page but with vary-
ing width and height attributes in the HTML. Doing this causes the browser to draw an invisible
gap of that size between the surrounding elements. Example 4.14 shows this poor technique.

margin collapse
Vertical margins that are com-
bined.

Don't Be a Newb
Avoid spacer images

98 Chapter 4 Page Layout

<!-- a spacer image of 200px between two other images -->

Example 4.14 Using spacer images (poor style)

Nowadays we look back in shame at such an egregious hack. The right way to do it is to set a
200px margin on the side of one image to separate it from the other. The code in Example 4.15 looks
the same but has much better style.

#puppy {
 margin-left: 200px;
}

Example 4.15 Spacing images using CSS margins (better style)

4.2.2 Finding Box Model Problems with Firebug
We recommend Firefox for web development, and if you use Firefox for web programming, you

simply must install Firebug. It's an extremely powerful add-on that, among many other things, allows
you to "inspect" the code of any page to see a visual layout of its box model, all of its CSS properties,
and generally learn anything you want about the content on the screen. It's a phenomenal tool for
answering those, "Why does it look like that?" questions.

Figure 4.5 Inspecting an element with Firebug

The quickest way to find box model problems is to right-click an element in Firefox and choose
Inspect Element, as shown in Figure 4.5. You'll see the HTML on the left and the CSS styles that
apply to the element on the right. Inspect those styles to make sure the ones you expect are there. If
the size or location of the element aren't right, click Firebug's Layout tab on the right to see the ele-
ment's size and shape, including its padding and margins, colored highlights of each region, and a
handy ruler overlay, as shown in Figure 4.6.

 4.2 Introduction to Layout 99

Figure 4.6 Using Firebug

Firebug is a wonderful tool for web development. Install it from http://www.getfirebug.com/.

Self-Check
4. If you specify for an element to have a width of 10em, a padding of 2em, a border-width of

1em, and a margin of 1em, how much total horizontal space is occupied by the element?
a) 10em
b) 12em
c) 14em
d) 16em
e) 18em
f) 20em

5. What's the difference between margin and padding?
6. Consider the following HTML/CSS code:

<div> <p>Hello there</p> </div>

div {
 border: 5px solid black;
 padding: 1em;
}
p {
 background-color: blue;
 border: 5px solid red;
 color: white;
 margin: 1em;
 padding: 4em;
}

 Which of the following best matches the appearance the code would have in the browser?

a)

b)

c)

100 Chapter 4 Page Layout

4.3 Floating Elements
There are times when the browser's normal layout simply won't position an element the way you

want. For example, you may want multiple columns of text. You might want an image on the side of
your page with text wrapping around it. You might want a sidebar of useful links. None of these lay-
outs can be achieved with the CSS properties we've seen so far. In the following sections we'll learn
about floating layouts, which are useful for precisely these kinds of situations.

Property Meaning Value

width how wide to make the element's content area a size (px, pt, %, em)

Before talking about floating layouts, we must mention the CSS width property. Normally a
block element is given a width equal to the entire page width. But if you specify some other width by
setting a width property value, you can control how wide that element and its content appear in the
browser. The width property applies only to block elements and to the img element; it is ignored for
other inline elements. Example 4.26 demonstrates two elements with width settings.

<p id="ex1">I am the very model of a modern Major-General,</p>
<p id="ex2">I've information vegetable, animal, and mineral.</p>

#ex1, #ex2 {
 border: 2px solid black;
 width: 12em;
}
#ex2 {
 text-align: right;
}

Example 4.16 Element width

Notice that if the text-align is set to right, it makes the text within the element right-aligned,
but the overall element itself is still on the left edge of the page. We could right-align the overall div
using appropriate left and right margins. We mention the width property here because it is very im-
portant when creating floating layouts.

4.3.1 The float Property
Property Meaning Value

float whether to use "float" positioning to lift this
element from the normal content flow

left, right, none (default)

The CSS float property lifts an element up from the normal content flow and shifts it to either
the left or right edge of the page, where it hovers or floats above other content. Any nearby elements'
text wraps around the floating element as necessary.

 4.3 Floating Elements 101

A floating element's vertical position is the same as it otherwise
would have been on the page. Its horizontal position is flush against the
left or right edge of the document. If the floating element is contained
within another block element, it floats against the edge of that element
instead. If you want it to float a bit of distance away from the edge, you
can set a margin on the floating element. There is no way to float con-
tent in the center of the page, only to the left or right edge, which can be
frustrating for new web developers.

Floating elements are great for elements that you want to "hover" on one edge of your page, with
multiple lines of text wrapping around them. Example 4.17 demonstrates a floating element, and
Figure 4.7 shows a sketch of the layout that would result in the browser.

<div id="sidebar">...</div>
<h1>...</h1>
<p>...</p>
<p>...</p>

#sidebar {
 float: right;
}

Example 4.17 Floating element

Figure 4.7 Floating element (output)

Many new web programmers don't understand the difference between floating and alignment.
They decide that if they want something on the right side of the page, they should always float it
right. But floating is a more drastic measure than simple alignment. A floating element is removed
from the normal block flow of the document; other block elements lay themselves out around and
underneath the floating element, ignoring it for layout purposes. But the inline content within those
block elements does respect the floating element and wraps neatly around it. The rule of thumb is, if
you simply want something on the left or right side of the page, align it. If you want it to hover on
that side of the page with other content wrapping around it, float it.

Normally we float block elements such as a div, and in fact when any element is floated it is the-
reafter treated as a block box. This means that it can have a width setting and horizontal margins,
unlike most inline content. One inline element that is often floated is img, producing a hovering im-
age next to a multi-line section of text. This also avoids the nuisance of placing a tall image inline with
a large amount of shorter neighboring text. Example 4.18 demonstrates a floating image.

floating element
One that is lifted out of the
normal page layout and placed
against the far left or right
edge of the page or its con-
taining element.

102 Chapter 4 Page Layout

<p>

 Boris Sadigev (born July 30, 1972) is a fictional Uzbekistan
 journalist played by British-Jewish comedian Sasha Von Neumann. He is
 the main character portrayed in the controversial and successful film
 Boris: Culinary Learnings of America for Make Money to Glorious Nation
 of Uzbekistan. Boris ...
</p>

img.hovericon {
 float: right;
 width: 130px;
}

Example 4.18 Floating image

If a floating block element has lengthy inline content, it should have a width property value to
constrain its width. If no width is specified, the floating element's content will occupy 100% of the
page width, and there will be no room for content to wrap around it. Figure 4.8 shows several float-
ing elements, some of which have width settings and some that do not. Notice that the second para-
graph, which floats but has no width setting, occupies 100% of the width of the page.

Figure 4.8 Floating elements with widths

4.3.2 The clear Property
Property Meaning Values

clear whether to move this element below any
prior floating elements in the document

left, right, both, none (default)

The clear property disallows any floating elements from overlapping some other element. You
place this element below any left-floating elements by setting clear to left, or place it below any

 4.3 Floating Elements 103

right-floating elements by setting clear to right. You can place the element below any floating
elements on either side by setting clear to both. Example 4.19 shows a cleared element and Figure
4.9 shows the resulting page layout.

<div id="sidebar">...</div>
<h1>...</h1>
<p id="section2">...</p>
<p>...</p>

#sidebar {
 float: right;
}
#section2 {
 clear: right;
}

Example 4.19 Clear

Figure 4.9 Clear (output)

The effect of clear is that the element will appear below any previous floating content, rather
than side-by-side. It's your way of saying, "Stop the float, I want to get off!" Example 4.20 shows a
floating image and a heading that clears. Notice that the yellow "My Starhome Sprinter Fan Site" text
drops down below the image of the character, which it wouldn't do without a clear setting.

104 Chapter 4 Page Layout

<p>

 Starhome Sprinter is a Flash animated Internet cartoon. It mixes
 surreal humour with references to 1980s and 1990s pop culture,
 notably video games, classic television and popular music.
</p>

<h2>My Starhome Sprinter Fan Site</h2>

img.hoveringicon {
 float: left;
 margin-right: 1em;
}
h2 {
 clear: left;
 background-color: yellow;
}
p {
 background-color: fuchsia;
}

Example 4.20 Heading with clear

4.3.3 Making Floating Elements Fit
One annoyance about floating elements is that because they're lifted up out of the normal docu-

ment flow, they have no effect on the width or height of the block element containing them. In other
words, if you place a tall floating element inside a block element without much other content, the
floating element may hang down past the bottom edge of the block element that contains it.

If we get rid of the cleared h2 from Example 4.20, you can see this problem in action. Example
4.21 makes this modification to the code. Notice that the image hangs down below the black border
for the div that contains it. This probably isn't the appearance the author intended. We'd rather have
the border extend downward to enclose the floating image.

 4.3 Floating Elements 105

<div id="main">
 <p>

 Starhome Sprinter is a Flash animated Internet cartoon. It mixes
 surreal humour with references to 1980s and 1990s pop culture,
 notably video games, classic television and popular music.
 </p>
 <p>Starhome's theme song says, "Everyperson! Everyperson!"</p>
</div>

img.hoveringicon {
 float: left;
 margin-right: 1em;
}
#main {
 border: 2px solid black;
}

Example 4.21 Floating image that doesn't fit

One workaround for this problem is to place a final empty element at the bottom of the main
section and give it a suitable clear value. This will cause the div to extend its height downward far
enough to accommodate the floating image and the empty element below it. However, this is poor
style, since the element with its clear property is added to the page entirely for layout purposes and
has no semantic value.

Property Meaning Values

overflow action to take if element's content
is larger than the element itself

visible (default), hidden,
scroll, auto

A better workaround is to use the CSS overflow property. This property specifies what an ele-
ment should do if its content is too big for it. Essentially the property is used to enable and disable
scrollbars on elements like text boxes and tall divs. But in this case it's also useful for telling the
browser not to let the floating content hang off the bottom of an element.

By setting the outer div's overflow property to either hidden or auto, the browser will make
the element large enough to fit the floating content. Various online tutorials suggest that using
hidden is the best choice since it is most compatible with various web browsers such as Internet Ex-
plorer 7. Example 4.22 demonstrates this idea. Notice how the enclosing div is now tall enough to fit
the entire image.

106 Chapter 4 Page Layout

<div id="main">
 <p>

 Starhome Sprinter is ...
 </p>
 <p>Starhome's theme song says, "Everyperson! Everyperson!"</p>
</div>

img.hoveringicon {
 float: left;
 margin-right: 1em;
}
#main {
 border: 2px solid black;
 overflow: hidden;
}

Example 4.22 Floating image that fits

If you specify a floating piece of content after another block ele-
ment, it will appear below that element. Web developers new to using
the float property encounter this when trying to make a floating element
appear directly to the right of another element just before it on the page.

Notice how the smiley face appears below the paragraph in Example 4.23.

<div id="main">
 This is some text
 that spans two lines

 <div class="spacer"></div>
</div>

#logo { float: right; }
#main { border: 2px solid black; }
.spacer { clear: both; }

Example 4.23 Common error: floating element too late in page

Common Error
Floating element too
late in the page

 4.3 Floating Elements 107

The problem occurs even if we put the two lines of text into a paragraph and set a small width
value on the paragraph. The proper fix is to define the logo image before the text in the HTML, so its
floating position is established before the text is drawn by the browser, as shown in Example 4.24.

<div class="urgent">

 This is some text
 that spans two lines
 <div class="spacer"></div>
</div>

Example 4.24 Corrected error with floating image

4.3.4 Multi-Column Floating Layouts
When more than one element floats in the same direction, they stack horizontally. The first one

is the furthest toward the float direction (for example, if all the elements float right, the first one will
be the furthest right).

This stacking can be useful for creating pages with multi-column layouts. To do this, create mul-
tiple divs, each with a float and width attribute. Example 4.25 demonstrates such a multi-column
layout. Since the columns float, the paragraph following the columns is given a clear value to make
sure it is placed below the columns.

<div class="column">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Integer pretium dui sit amet felis.
</div>
<div class="column">
 Integer sit amet diam. Phasellus ultrices viverra velit.
</div>
<div class="column">
 Beware the Jabberwock, my son!
 The jaws that bite, the claws that catch!
</div>
<p id="aftercolumns">
 I am the text that follows the columns.
 This is some really important text.
 You had better read it if you know what's good for you.
</p>

div, p {
 border: 2px solid black;
}
.column {
 float: right;
 width: 25%;
}
#aftercolumns {
 background-color: yellow;
 clear: both;
}

108 Chapter 4 Page Layout

Example 4.25 Multi-column layout

It's important to note that any content to follow these columns should clear the previously set
float. If this is not done, the following content tries to flow around the floating columns, which
usually produces the wrong appearance. If Example 4.25's code had no clear attribute set on the last
paragraph, it would have the appearance shown in Figure 4.10. The final paragraph actually appears
to the left of the column divs, which is likely not the appearance intended. Interestingly the para-
graph's yellow background also bleeds through into the divs. To avoid this we could explicitly give
the column divs a background-color of white.

Figure 4.10 Multi-column layout without clear

Self-Check
7. What is the difference between setting float: right; and text-align: right; ?
8. If you float two consecutive elements to the same side of the page, what happens? Where

will the two elements appear with respect to each other?
9. Why is it important to set a width on a floated element? What can happen if it is not set?
10. What is the meaning of the overflow property? How is it related to floating elements?
11. Given the following code (abbreviated):

<div id="main">
 <h1>My fan site</h1>

 <p>Starhome Sprinter is a Flash animated Internet cartoon...</p>
 <p>Most of the site's traffic comes from the United States...</p>
 <p>The cartoons are nominally centered on title character ...</p>
 <p>Starhome's theme song says, "Everyperson! Everyperson!"</p>
</div>

 What CSS code would be necessary to make the page have the following appearance?

 4.4 Sizing and Positioning 109

4.4 Sizing and Positioning
We've already seen that each element has a default position and size. The default position of

block elements is stacked vertically down the page. The default position of inline elements is in a left-
to-right flow from top to bottom within their enclosing block elements. A block element's default
width is 100% of the page width, and its default height is the height of its inline content. An inline
element's default size is just large enough to fit its contents. It's possible to change these defaults us-
ing the CSS properties shown in this section.

4.4.1 Width and Height
Property Meaning

width, height how wide or tall to make the element's content area

max-width, max-height,
min-width, min-height

the minimum or maximum size of this element

The size given to an element's content can be changed by setting its CSS width and height
properties. We have already mentioned the width property when discussing floating elements. It's
also legal to specify minimum and maximum sizes for the element. When a minimum or maximum is
set, the browser will try to use the element's default size, but if that would exceed the minimum or
maximum, the size is restricted to that bound. All of the properties listed above apply only to block
elements and to the img element; they are ignored for other inline elements (unless they are floating).

Example 4.26 demonstrates sizing of several elements. Notice that since h2 is given a height of
3em, its box is now too tall for its contents, so the text inside the heading appears at the top of the
element with some empty shaded space underneath. Later in this chapter we'll see how to change that
with the vertical-align property if we want to do so.

<p>This is a paragraph with a fair amount of text</p>
<h2>This is an h2</h2>

p {
 width: 10em;
 background-color: yellow;
 border: 2px solid black;
}
h2 {
 height: 3em;
 background-color: aqua;
 border: 2px solid black;
}

Example 4.26 Width and height

110 Chapter 4 Page Layout

Centering Block Elements
It's also possible to center a block element on the page using margins. To do so, give a width to

the element and then set its margin-left and margin-right to the special value auto. A value of
auto means to let the browser decide the margins. In this case, setting them both to auto has the
effect of making them both the same size, which places the element horizontally in the center of the
page. Example 4.27 illustrates this technique.

<p>
 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut la-bore et dolore magna aliqua.
</p>

p {
 border: 2px solid black;
 margin-left: auto;
 margin-right: auto;
 width: 33%;
}

Example 4.27 Centering with auto margins

Centering with auto margins only works if the element has a width setting; if not, the element
occupies 100% of the page width and is too wide to be centered.

It's important to understand the difference between centering a block element and centering the
inline content inside it. Notice that the text in the preceding example isn't center-aligned; each line is
left-aligned, just not with respect to the left edge of the page. To center inline text within a block
element, give the block element a text-align: center; instead.

Inline Elements
You can also adjust the size and position of inline elements, though there are some distinctions

between them and block elements:

• The various size properties (width, height, min-width, max-height, etc.) are ignored for
inline boxes, except when used with the img element.

• The margin-top and margin-bottom properties are ignored. (margin-left and margin-
right do work.)

• The padding-top and padding-bottom properties cause a padding to appear between an
inline element and its border as expected, but they do not cause neighboring lines to be
spaced any further apart. This can cause the inline element's border or padding to run over
into the lines above and below. The img element is the one exception to this rule; img ele-
ments with vertical padding do cause spacing between themselves and neighboring lines.
(The padding-left and padding-right properties behave as expected on an inline ele-
ment; they do cause neighboring text content to be spaced farther to the left and right.)

• The containing block element's text-align property controls horizontal position of inline
boxes within it.

 4.4 Sizing and Positioning 111

• Each inline box's vertical-align property aligns it vertically within its block box.

The vertical-align property is a new one we haven't discussed yet, and it has some subtleties,
so it deserves its own section.

Vertical Alignment

Property Meaning Values

vertical-align vertical alignment of an inline element baseline (default),
top, middle, bottom,
sub, super,
text-top, text-bottom,
or a size value or %

The vertical-align property specifies where an inline element should be aligned vertically,
with respect to other content on the same line within its block element's box. The default value of
baseline aligns the content vertically with the bottom or baseline of the non-hanging letters of
inline text. (Hanging letters are ones such as g or j that have parts that protrude below the normal
bottom line of the text.)

Figure 4.11 Text baseline

Example 4.28 shows several images with different vertical alignments and the way they look with
respect to the neighboring text. The paragraph's inline content is wrapped into an overall span with a
class of inlinestyles, so that we can apply a border to it to help you see the relative vertical
alignment of the images.

<p>

 Don't be sad! Turn that frown
 upside down!

 Smiling burns calories, you know.

 Anyway, look at this cute puppy; isn't he adorable! So cheer up,
 and have a nice day. The End.

</p>

112 Chapter 4 Page Layout

p {
 border: 3px solid black;
}
.happy {
 vertical-align: bottom;
}
.inlinestyles {
 border: 3px solid red;
 vertical-align: top;
}
.puppy {
 vertical-align: middle;
}

Example 4.28 Vertical alignment

There are cases where you'll want an image inside a block element
that is exactly as tall as that image. (We see this a lot when we're placing
images into tables. We'll discuss tables in a later chapter.) You'd think it

would work to make the block element exactly the right size to fit the image, by setting its padding to
0em. But when you do so, there is a bit of space under the image, as shown in Example 4.29.

<p class="alert">

</p>

.alert {
 background-color: red;
 margin: 0px;
 padding: 0px;
}

Example 4.29 Common error: space under image

Common Error
Space under image

 4.4 Sizing and Positioning 113

There is red space under the image, despite padding and margin of 0. This is because the image is
vertically aligned to the baseline of the paragraph, which isn't the same as the bottom. Setting
vertical-align to bottom as shown in Example 4.30 fixes the problem because it causes the im-
age to also occupy the previously empty baseline area.

<p class="alert">

</p>

.alert {
 background-color: red;
 margin: 0px;
 padding: 0px;
}
.bottom {
 vertical-align: bottom;
}

Example 4.30 Corrected error with space under image

Notice that now the image is flush against both the top and bottom of the area containing it, with
no red space showing underneath. Another fix for this problem is to set the line-height property
to 0px, which places the baseline into the same position as the bottom, but this is more hackish.

4.4.2 Positioning
Property Meaning Values

position location of element on page static: default position
relative: offset from its normal
static position
absolute: at a particular offset
within its containing element
fixed: at a fixed location within the
browser window

top, bottom,
left, right

offsets of element's edges a size in px, pt, em, or %

There are times when the standard flow of content on the page isn't ideal for presenting your
page's information. For example, your page may have a sidebar of links that you want always to be
visible even after the user scrolls down the page. Or you may have a pair of block elements that you
want to appear next to each other horizontally. To achieve these kinds of effects, we can use the po-
werful CSS position property, which chooses from several models to position an element.

114 Chapter 4 Page Layout

The default position is static, meaning to place the element within
the normal document flow. But we can lift the element out of the nor-
mal flow in many different ways. Example 4.31 demonstrates relative posi-
tioning, which lets you shift an element's position slightly relative to its
normal static position.

<p>
 This example has some text
 with a relative position.
</p>

#lifted {
 position: relative;
 left: 0.5em;
 top: 1em;
 border; 2px solid black;
}

Example 4.31 Relative positioning

After setting the position to relative on the element, you can set its top, bottom, left, or
right properties to specify the relative adjustments to those respective edges of the element's box.

Absolute Positioning
Elements with a position of absolute are given an absolute position

on the page and are removed from the normal flow. They are positioned
at an offset relative to the block element containing them, assuming that
block also uses absolute or relative positioning. (If it doesn't, the
position is relative to the edges of the overall web page.)

Other elements on the page completely ignore the absolutely positioned element when laying
themselves out. It's as though the element isn't even there, as far as their layout and positioning is
concerned. Example 4.32 demonstrates absolute positioning, and Figure 4.12 shows the appearance.

<div id="area1">...</div>
<div id="area2">
 ...
 <div id="menubar">...</div>
</div>
<p>...</p>

#menubar {
 position: absolute;
 top: 20px;
 right: 40px;
 width: 100px;
}

Example 4.32 Absolute positioning

relative positioning
Setting the location of an ele-
ment to an offset from its
normal static position.

absolute positioning
Setting the location of an ele-
ment to an offset from the
block element containing it.

 4.4 Sizing and Positioning 115

Figure 4.12 Absolute positioning (output)

As with relative positioning, the element's placement is determined by the values of its top,
bottom, left, and right properties. You should generally specify a width property as well.

Generally the coordinates of an absolutely positioned element are relative to the entire page. If
you want to make them relative to a particular element on the page instead, enclose your absolutely
positioned element inside another element that uses absolute or relative positioning. A common id-
iom is to use an enclosing div with relative position, but no left, top, right, or bottom values.
This will make the outer div stay at its normal static position, but also serve as a point of reference
for any absolutely positioned elements inside it. Example 4.33 demonstrates this technique.

<div id="area1">...</div>
<div id="area2">
 <div id="menubar">...</div>
</div>
<p>...</p>

#area2 { /* menubar will be relative to this div's position */
 position: relative;
}
#menubar {
 position: absolute;
 top: 20px;
 right: 40px;
 width: 100px;
}

Example 4.33 Absolute positioning with relative containing element

116 Chapter 4 Page Layout

Figure 4.13 Absolute positioning with relative containing element (output)

If you use a percentage for your absolute position, you may not see the correct layout in some
browsers unless you style the body to have a width/height of 100%, as shown in Example 4.34.

body {
 width: 100%;
 height: 100%;
}
#menubar {
 position: absolute;
 top: 20px;
 right: 40px;
 width: 20%;
 height: 50%;
}

Example 4.34 Body width and height styles

An absolute position may sound a lot like floating an element. But a crucial difference is that, un-
like absolutely positioned elements, floating ones still affect the flow of nearby inline content. A float-
ing element is removed from the normal block flow of the document, and block elements lay them-
selves out underneath the floating element, ignoring it for layout purposes. But the inline content
within those block elements does respect the floating element and wraps neatly around it. Absolutely
positioned elements are ignored by other elements on the page during layout.

Fixed Positioning
Elements with a position value of fixed are given a fixed position

on the screen and are removed from normal flow. This is much like ab-
solute positioning, except that fixed elements are positioned relative to
the overall browser window, not the page or their containing element. In
other words, a fixed element will stay in exactly the same place on the

screen, even if the user scrolls up and down the page. A fixed position is useful for content that you
always want to be visible on the page, such as a sidebar of links or (shudder) an advertisement.

The CSS code in Example 4.35 is the same as in Example 4.32 seen previously, except with a
fixed instead of absolute position. The screen diagram in Figure 4.14 shows the page after the user

fixed positioning
Setting the location of an ele-
ment to an absolute location
on the browser screen.

 4.4 Sizing and Positioning 117

has scrolled down. The menubar section of the page remains in its original place and does not scroll
with the other page contents underneath it.

<div id="area1">...</div>
<div id="area2">
 <div id="menubar">...</div>
</div>
<p>...</p>

#menubar {
 position: fixed;
 top: 20px;
 right: 40px;
 width: 100px;
}

Example 4.35 Fixed positioning

Figure 4.14 Fixed positioning (output, after scrolling down the page)

The left, right, top, or bottom value can be negative to cause an element to sit outside the visible
browser window. This can create a nice "hanging" effect of an element that's partially off the page.
Example 4.36 shows the necessary CSS and Figure 4.15 shows a diagram of the resulting appearance.

#menubar {
 position: fixed;
 top: 20px;
 left: -50px;
 width: 100px;
}

Example 4.36 Fixed position with negative offset

118 Chapter 4 Page Layout

Figure 4.15 Fixed position with negative offset (output)

4.4.3 Z-indexing
Property Meaning Values

z-index element's 3-dimensional ordering auto (default), or an integer

The z-index property sets which absolute or fixed positioned element will appear on top of
another that occupies the same space. An element with a greater z-index appears on top of any oth-
ers on the same part of the screen.

4.4.4 Element Visibility
CSS has two properties named display and visibility that let you hide elements on a page.

There are a few differences between the two properties, which we'll discuss in the following sections.

The display Property

Property Meaning Values

display whether an element is dis-
played as a block or inline
element, or not at all

block (display as a block element),
inline (display as an inline element),
none (don't display this element),
...

visibility whether an element's content
can be seen on the page

visible (default), or hidden

The display property sets the type of CSS box the browser should use to display a particular
element. This is a powerful property that lets you "play God" a bit with your HTML. For example,
you can set an li to display as an inline element even though the browser would normally display it
as a block element. Example 4.37 demonstrates headings that display as inline elements.

 4.4 Sizing and Positioning 119

<h2>This is a heading</h2>
<h2>This is another heading</h2>

h2 {
 background-color: yellow;
 border: 1px solid black;
 display: inline;
}

Example 4.37 Displaying a block element as inline

Setting the display property has no effect on what is/isn't valid XHTML. For example, even if
you set a span's display to block, the W3C XHTML validator will complain if the span is not
placed inside a block element. Use display sparingly, because it can radically alter the page layout.

One common use of display is to make the contents of a list display horizontally rather than
vertically. Most new web developers think of a ul as showing on the page as a bulleted list, with each
item on its own line. But by setting the list items to display inline, the list flows horizontally with no
bullet next to each item. Example 4.38 illustrates this technique.

<ul id="menubar">
 News
 Links
 Members Only
 Join

li {
 display: inline;
 padding: 0.5em;
 border: 2px solid gray;
}

Example 4.38 Displaying a list as inline

You might ask why we're using an unordered list in Example 4.38, rather than, say, a paragraph
with four span elements inside it for the list items. But remember that we should choose our HTML
tags based on the meaning of the content. The above section headings are a list, not a paragraph.
Tagging them as list items is more semantically descriptive than simply labeling them as spans of text.

There are other values display can have (such as compact and table-column-group), but
most of them are obscure values dealing with tables, which we'll cover later in this textbook.

An element whose display is set to none is not shown on the page at all. For example, the code
in Example 4.39 produces no visible output in the browser. Right now it might not make sense to set
display to none, rather than just deleting the element from the page's source code altogether or
commenting it out. But in later chapters we'll see a common usage of display where we'll show and
hide an element dynamically in response to user events using JavaScript.

120 Chapter 4 Page Layout

<div>
 <p class="secret">No one will be able to see this! :-(</p>
 <p>But you can see this</p>
</div>

p.secret {
 display: none;
}

Example 4.39 Non-displayed element

The visibility Property
The visibility property sets whether an element should be shown onscreen. The default visi-

bility for an element is visible, but when an element's visibility is set to hidden, the element will
not be shown on the page. The main difference between the display and visibility properties is
the following:

• display: none; means the element does not occupy space on the page ("It's not there")
• visibility: hidden; means the element still occupies space on the page, but its contents

are not drawn and it is invisible to the user ("It's there, but I can't see it")

Example 4.40 shows a hidden element. It's not very exciting, because you can't see the element.
But notice that the area containing the hidden paragraph is large enough to fit the paragraph, unlike
the previous example with display set to none, in which the outer area was smaller.

<div>
 <p class="secret">No one will be able to see this! :-(</p>
 <p>But you can see this</p>
</div>

p.secret {
 visibility: hidden;
}

Example 4.40 Hidden element

Later we'll use this property to show and hide dynamic HTML content on the page in response
to user events in JavaScript. Sometimes a visibility of hidden is better than a display of none
in such cases because the page layout already has allocated space for the hidden element, so the layout
won't change when we instruct the element to appear.

 4.4 Sizing and Positioning 121

Self-Check
12. What CSS code would center a paragraph horizontally on the page, making it occupy half the

page's width, and with the text right-aligned within the paragraph?
13. What CSS code would place a paragraph against the right edge of the page, making it occupy

half the page's width, but with the text left-aligned?
14. Which of the following CSS properties have an effect, when set on an inline element?

Choose all that apply.
a) margin
b) margin-top
c) margin-left
d) width
e) height
f) padding
g) padding-bottom
h) padding-right

15. What vertical-align value does each of the following images have?

16. What is the difference between absolute and fixed positioning? Which is more appropriate

for each of the following items you might want to put on your page?
a) a bar of links that should be visible on the page at all times
b) a left column of the page's layout showing various news and updates; the updates

might be longer than the browser window is tall
c) an image that you want to appear to the right of some text in a paragraph
d) a pop-up ad that shows on top of the normal page content and can't be dodged by

scrolling down the browser window
17. What is the difference between setting display: none; and visibility: hidden; on an

element? How can you tell them apart by looking at the page?

122 Chapter 4 Page Layout

4.5 Internet Explorer Layout Quirks (optional)
One of the sad realities of web programming is that Microsoft's Internet Explorer browser sim-

ply does not follow the rules. There are a large number of major bugs and incompatibilities in IE that
can make us web coders want to tear our hair out. Microsoft has chosen simply not to follow web
standards. In particular, IE does not implement the CSS box model the way it is supposed to be im-
plemented. A page that looks one way in IE may look a completely different way in Firefox or Safari.
A page that shows up in one browser may be blank or badly misformatted in another. This leaves
web programmers with a tough decision: Which users do I want to be able to see my page correctly?

The worst part is, despite the fact that Microsoft's IE team continues to release new versions of
their browser (version 8 is being readied as this book goes to press), they choose not to correct these
problems. It's not clear whether this is because they want to retain compatibility with existing pages
that use the old incorrect behaviors, or as a way of intentionally balkanizing the web and making it
harder for the web as a platform to reduce the importance of Microsoft's Windows operating system.
Either way, it can be a royal pain to deal with IE, as you'll see if you try to do so as a web dev.

Fortunately, if you are aware of some of IE's most major deficiencies and workarounds for them,
you can often create a page that works in both IE and standards-compliant browsers. In this section,
we list some of the more common quirks of IE and suggest ways to deal with them. The section is
intentionally kept short, because we generally object to Microsoft's decisions here and want to focus
on and follow web standards as much as possible.

The Broken Box Model
Various versions of Internet Explorer misinterpret the width and height properties. It consid-

ers them to include the padding and border around the element, which it shouldn't. This is disastrous
for web developers who want a consistent appearance to their pages, because the width you set for a
standards-compliant browser simply won't match that seen in IE, unless your elements have no pad-
ding. The element will appear too thin in IE, since the same number of pixels now have to accom-
modate the padding and border. Thanks a lot, IE development team.

Figure 4.16 Box model, standard-compliant (left) and IE (right)

To make matters worse, Internet Explorer 6 also doesn't support the min-width, min-height,
max-width, or max-height properties. What a pain! Many web developers have come up with hacks
to try to emulate the effect of properties like min-width in IE, such as the following sites:

• http://www.cssplay.co.uk/boxes/minwidth.html
• http://www.webreference.com/programming/min-width/

 4.5 Internet Explorer Layout Quirks (optional) 123

The Broken Float Model
If you float an element inside another block element and want to space it from the edge a bit, you can
set a margin on the appropriate side. For example, the code in Example 4.41 is supposed to space a
div 100px from the page's left edge. It works properly in standards-compliant browsers.

div#floating {
 float: left;
 margin-left: 100px;
}

Example 4.41 Float with left margin

In Internet Explorer 6 when an element is floated left, its left margin is mistakenly doubled by
the browser. In this case our floating element actually appears 200px from the left edge.

This is not the only bug related to floating elements; there is a lengthy list of such bugs. For ex-
ample, when you float elements, often IE6 will mistakenly indent the first line of nearby text with the
same amount of indentation as the floating element's margin-left setting.

Figure 4.17 IE6 float text indentation bug

A suggested workaround for IE is to set the floated element's display to inline, which does
mysteriously fix the bug. But this is simply a hack and shouldn't make such a drastic change to the
page's layout.

div#floating {
 display: inline;
 float: left;
 margin-left: 100px;
}

Example 4.42 Display inline hack for float bug

Here's another float bug. If you float an element to the left and then position other block content
underneath it, the block element is supposed to lay itself out normally. But in IE, if the underlying
block element has a width declaration, it will also be mysteriously turned into a floating element and
placed to the side of the floating one. This bug still exists in IE7 (it is fixed in IE8), so the majority of
users of the web potentially face this issue. IE also often adds 3px or so of margin between floating
elements and other elements, even when they are supposed to touch flush against each other. On and
on. The following site has a floating elements test that IE7 and below fail miserably:

• http://css-class.com/articles/explorer/floats/floatandcleartest1.htm

As you can see, getting floating layouts to render correctly in IE can be a grueling experience.

124 Chapter 4 Page Layout

4.5.1 Workarounds for IE Flaws
A lot of times you can make a page look right in Internet Explorer if you can apply different CSS

rules to it in IE than you do to other browsers. The idea is to supply one set of CSS rules to IE that
account for its misbehavior, and another set to everybody else who follows the rules.

The "Underscore Hack"
Over the years a bunch of CSS "hacks" have been found that can be used to target IE exclu-

sively. For example, recall how IE's box model deals with widths and heights improperly. Some crafty
CSS developer discovered that IE will pay attention to CSS rules even if they have certain bad charac-
ters in them, such as underscores. For example, if you try to set a property named _width, standards-
compliant browsers will completely ignore it, but IE will happily set the element's width. People use
this to set IE to use a larger width to give space for the element's horizontal padding and borders, as
in the code shown in Example 4.43.

div {
 width: 100px;
 padding: 10px;
 border: 10px solid black;
 _width: 140px;
}

Example 4.43 IE "underscore hack" (not recommended!)

There are other equally objectionable hacks, such as calling it w\idth or using a bogus context
selector that only IE will recognize, such as * html div { ... }. We strongly discourage against
using hacks like these. Many of them will break your CSS file so that it does not pass the W3C valida-
tor. IE support isn't worth that.

Fortunately there's a better way to get this same effect of providing a special set of style rules to
IE. This can be achieved by a special IE-only proprietary HTML feature called conditional com-
ments. A conditional comment is a comment that can contain an if statement in it, causing a piece of
HTML to be included only if some condition is met. The syntax for conditional comments is:

<!--[if condition]>
 HTML code
<![endif]-->

The most common thing to write under condition is simply the letters IE, meaning, "if this
browser is any version of IE." All other browsers will ignore this text and treat it as a large HTML
comment. Another variation of a condition checks for a specific IE version, such as lte IE 6, since
different versions of IE have had different bugs and require different fixes.

Example 4.44 demonstrates Internet Explorer's conditional comments. The code uses them to
link to a file ie_hacks.css on all versions of IE, and to an additional file ie6_more_hacks.css if the
browser is specifically IE6. The ie_hacks.css file contains the 140px width to correct for IE's broken
box model, so that the actual content width of the element will be the desired 100px to match the
standard-compliant browsers.

 4.5 Internet Explorer Layout Quirks (optional) 125

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <!--[if IE]>
 <link href="ie_hacks.css" type="text/css" rel="stylesheet" />
 <![endif]-->

 <!--[if lte IE 6]>
 <link href="ie6_more_hacks.css" type="text/css" rel="stylesheet" />
 <![endif]-->
 ...

/* ie_hacks.css file contents */
div {
 width: 140px;
}

Example 4.44 Internet Explorer conditional comments

126 Chapter 4 Page Layout

4.6 Case Study: Ultimate Frisbee
At the start of this chapter, we posed the problem of laying out an ultimate Frisbee site. Recall

the appearance we wanted it to have, as shown in Figure 4.1. Now, with our new knowledge of CSS
ids and classes, div and span, the box model, and layout, we can achieve the desired layout.

Figure 4.18 Ultimate frisbee page, desired appearance

Let's assume that we're starting out with the HTML code shown in Example 4.45 (abbreviated),
and that we want to change the HTML code as little as possible in our process of styling the page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>Ultimate Frisbee</title></head>
 <body>
 <h1>News</h1>

 Ultimate frisbee declared an Olympic sport
 ...

 <h1>Marty's Ultimate Page</h1>
 <p>Welcome to my ultimate page! ...</p>

 <h2>2008 College and HS Westerns</h2>
 <p>
 College Championships will be in Boulder, CO ...</p>
 ...
 <h1>Events</h1>

 January
 February ...

 </body>
</html>

Example 4.45 Initial HTML code for Ultimate Frisbee page

 4.6 Case Study: Ultimate Frisbee 127

Let's come up with a strategy to approach this problem step-by step. The following order of op-
erations should help us create the desired page appearance:

1. Look at the desired appearance picture and decide what are the major sections of the page.
Change the HTML code to semantically represent these sections as div elements.

2. Link the page to a CSS file that we'll create incrementally.
3. Add general styles not related to tricky layout, such as fonts, colors, and alignment.
4. Tackle the layout for each section, starting with the Events calendar, then the News section

and central announcements.

4.6.1 Page Sections and General Styles
First let's denote the major sections of the page and wrap them in divs as appropriate. The news

at left and the calendar at right seem to be major page sections, so they each deserve a div. Let's also
place a div on the central section containing the announcements. We'll give each one an id for styl-
ing, as shown in Example 4.46.

<div id="news">
 <h1>News</h1>
 Ultimate frisbee declared an Olympic sport ...

</div>

<div id="announcements">
 <h1>Marty's Ultimate Page</h1> ...
</div>

<div id="calendar">
 <h1>Events</h1>
 January ...

</div>

Example 4.46 Ultimate frisbee page sections

Now let's take a stab at a few initial styles, without worrying about the complex layout of the
page just yet. We'll edit the HTML page's header to include a link to our CSS file:

<head>
 <link href="ultimate.css" type="text/css" rel="stylesheet" />

General Styles
The overall page body should use a 12pt Tahoma sans-serif font. The central announcements

section has a green background and a black border. The level-1 headings on the page should be cen-
tered and have reduced margins. Also note how the level-2 headings have a blue background color
and white text, and their first word is in a large font. Earlier in this chapter we discussed how to
achieve such styles by wrapping text in spans. All these initial styles are shown in Example 4.47.

128 Chapter 4 Page Layout

body {
 font: 12pt "Tahoma", "Arial", sans-serif;
}
.announcement { /* text inside h2 headings */
 background-color: #0000cc;
 color: white;
}
#announcements {
 background-color: #ddffdd;
 border: 2px solid black;
}
h1 {
 margin: 0em 0em 0.5em 0em;
 text-align: center;
}

Example 4.47 Initial page styles

Image, Heading, and List Styles using Context Selectors
Some of the announcements have images associated with them, which should hover on the right

side of the main pane. Rather than styling each of those images with a CSS class, we can use a con-
text selector to float all img elements within the announcements area. (We'll set a clear property on
the h2 elements for each announcement, so that one announcement's image never hangs down into
the next announcement.) Example 4.48 shows the related CSS styles.

#announcements img {
 float: right;
 margin-left: 2em;
}

#announcements h2 {
 border-bottom: 2px solid black;
 clear: right;
}

Example 4.48 Styles for headings and floating images

The calendar and news sections have several non-layout styles that we can apply now. The news
area should have a small font. Also, you'll notice that in our page the list of news items is a bulleted
list, while in the expected page appearance there are no bullets and boxes around each news item.
This might make you think that ul is the wrong tag for this list of items, but that would be faulty
logic. We don't choose our HTML tags based on how content looks; we choose them based on the
meaning and semantics of the content. This is still a list of items, so ul is the right tag. We'll just re-
move the bullets by setting a list-style-type property on the list in the News area. We don't need
to give an id to the list to achieve this; we can do it with a CSS context selector that matches any ul
inside the #news area. The list items themselves (li) inside this list can be given borders and back-
ground colors to make them match the desired appearance. Example 4.50 shows these styles.

 4.6 Case Study: Ultimate Frisbee 129

#calendar {
 background-color: #00eeee;
 border: 2px solid black;
 line-height: 1.5em;
}
#news { font-size: smaller; }
#news > ul {
 list-style-type: none;
 padding-left: 0em;
}
#news li {
 background-color: #ffffcc;
 border: 3px solid #ffffc88;
 margin-bottom: 1em;
 padding: 1em;
}

Example 4.49 News and calendar area styles

After all the preceding styles have been applied, the page has the appearance shown in Figure
4.19 as a split screenshot to show part of the top and bottom of the page.

Figure 4.19 Ultimate Frisbee page appearance, take 1

130 Chapter 4 Page Layout

4.6.2 Page Layout
Now let's do a bit of layout work. The calendar at right should remain in the same position on

the page even after the user scrolls down. To do this, we'll give the calendar area a fixed position
near the top-right edge of the page. We'll set its width to be 8em, just right for the width of its text.

#calendar {
 background-color: #00eeee;
 border: 2px solid black;
 line-height: 1.5em;
 position: fixed;
 right: 1em;
 top: 1em;
 width: 8em;
}

Example 4.50 Calendar area styles

After these new styles have been applied to the page, it has the appearance shown in Figure 4.20.
It still has several glaring flaws. For one, the announcements area is too wide and reaches underneath
the fixed Events calendar. Second, the News section is still at the top of the page, rather than on the
left where it should be. We'll need to create additional styles to fix these problems.

Figure 4.20 Ultimate Frisbee page appearance, take 2

First let's fix the announcements area so it doesn't reach underneath the Events calendar. Since
the calendar area is 8em wide and 1em from the right edge of the page, we can set a right margin on
our announcements area of 10em, which will keep it from colliding.

#announcements {
 margin-right: 10em;
}

The news bar at left is a little trickier. It should move as the page scrolls, and it should also be
contained inside the central announcements area, with the announcement text wrapping around it.
This is an ideal case to use a floating layout.

 4.6 Case Study: Ultimate Frisbee 131

#news {
 float: left;
}

However, if the float style is the only one we set, the appearance still isn't quite right. We get
the appearance shown in Figure 4.21, with the News items awkwardly injected into the main an-
nouncements area. This is why it's so important to always set a width on any floating content, to keep
it from widening and interfering with other contents on the page.

Figure 4.21 Ultimate Frisbee page appearance, take 3

News and Announcement Section Layout
Let's apply some additional styles to the news section to clean it up. It should have a width of

8em, like the event calendar. Let's also place a 1em margin around it on all sides to distance it from
neighboring content.

#news {
 float: left;
 font-size: smaller;
 margin-left: 1em;
 width: 8em;
}

After these changes, we have the following layout, shown in Figure 4.22 in two sections so you
can see the top and bottom of the news area. The appearance is pretty close to what we want, but the
text after the News area moves over too far to the left. We want it to stay over to the right of the
news section all the way down the page. Also there isn't any spacing between the News section and
the announcement text, and the black borders behind the level-2 headings extend left under News.

Figure 4.22 Ultimate Frisbee page appearance, take 4

132 Chapter 4 Page Layout

Remembering the right margin we used to separate the announcements section from the events
section, we could try setting a similar left margin on the announcements section to distance it from
the floating news area. This helps, but it causes the green background and border to move away from
the News section, making it differ from the desired appearance, as shown in Figure 4.23.

Figure 4.23 Ultimate Frisbee page appearance, take 5

We want to put a left margin on the announcements area, but not the overall green box and bor-
der. How can we do this? The solution is to add an additional outer div layer to represent the green
background and black border, and place both the News and Announcements sections inside it. Then
we can place a margin on the announcements section without moving the border or background.

<body>
 <div id="main">
 <div id="news">
 <h1>News</h1> ...
 </div>

 <div id="announcements">
 <h1>Marty's Ultimate Page</h1> ...
 </div>
 </div>

 <div id="calendar">...</div>
</body>

Example 4.51 Adding main section to page for styling

The styles applied to the main section and announcements section must be chosen carefully. We
want the overall background and border on the new main section. We want the left margin on the
announcements section inside main, so the margin doesn't move the border. But the right margin,
the one to distance the central content from the calendar at right, must be on the main section and not
the announcements section. If it's placed on the announcements, the green background and border
will extend to the right underneath the calendar. Example 4.52 shows the new CSS styles. After add-
ing these final styles, we have the desired appearance from our original screenshot.

#main {
 background-color: #ddffdd;
 border: 2px solid black;
 margin-right: 10em;
}
#announcements { margin-left: 8em; }

Example 4.52 New CSS styles for main page section

 4.6 Case Study: Ultimate Frisbee 133

4.6.3 Final File Contents
After all of the changes and code in the previous sections, we end up with final files ultimate.html

and ultimate.css, shown in Example 4.53 and Example 4.54 respectively.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <!-- Chapter 4 case study: XHTML code for Ultimate frisbee page -->
 <head>
 <title>Ultimate Frisbee</title>
 <link href="ultimate.css" type="text/css" rel="stylesheet" />
 </head>

 <body>
 <div id="main">
 <div id="news">
 <h1>News</h1>

 Ultimate frisbee declared an Olympic sport ...

 </div>

 <div id="announcements">
 <h1>Marty's Ultimate Page</h1>
 <p>Welcome to my ultimate page! Here we have news, ...</p>

 <h2>2008 College and
 HS Westerns</h2>

 <p>
 College Championships
 will be in Boulder, CO...</p>

 <h2>Annual Members Meeting</h2>

 <p>The Annual Members ...</p>
 </div>
 </div>

 <div id="calendar">
 <h1>Events</h1>

 January
 February
 ...
 December

 </div>
 </body>
</html>

Example 4.53 Ultimate Frisbee page code ultimate.html

134 Chapter 4 Page Layout

/* Chapter 4 case study: CSS styles for Ultimate frisbee page */
body { font: 12pt "Tahoma", "Arial", sans-serif; }
.announcement {
 background-color: #0000cc; color: white;
}
#announcements { /* text inside h2 headings */
 margin-left: 8em;
 padding: 0em 1em;
}
#announcements h2 {
 border-bottom: 2px solid black;
 clear: right;
}
#announcements img {
 float: right; margin-left: 2em;
}
#calendar {
 background-color: #00eeee;
 border: 2px solid black;
 line-height: 1.5em;
 position: fixed;
 right: 1em;
 top: 1em;
 width: 8em;
}
#calendar ul { padding-left: 2em; }
.firstword { font-size: 32pt; } /* first word of h2 headings */
h1 {
 margin: 0em 0em 0.5em 0em;
 text-align: center;
}
#main {
 background-color: #ddffdd;
 border: 2px solid black;
 margin-right: 10em;
}
#news {
 float: left;
 font-size: smaller;
 margin-left: 1em;
 width: 8em;
}
#news ul {
 list-style-type: none;
 padding-left: 0em;
}
#news li {
 background-color: #ffffcc;
 border: 3px solid #ffff88;
 margin-bottom: 1em;
 padding: 1em;
}

Example 4.54 Ultimate Frisbee page styles ultimate.css

 4.6 Case Study: Ultimate Frisbee 135

Chapter Summary

• Block elements in an HTML document are laid out in a standard flow from top to bottom.
Inline elements are laid out within block elements from left to right, top to bottom.

• The CSS Box Model describes the regions HTML elements occupy. An element's box has an
optional border, with padding inside the border and margins outside it.

• Padding and margins are specified as a size; borders have a thickness, color, and style.
• Elements can be given a width and height. Content's horizontal and vertical position can be

affected by setting auto margins or changing the vertical-align property, respectively.
• Elements can be given custom positions by setting their position property. An absolute

position specifies a particular offset within the surrounding region. A fixed position speci-
fies an offset within the browser window.

• The display and visibility properties set whether an element is displayed as a block
element, inline element, or not at all.

• Floating elements are lifted out from the normal document flow and pushed over to the left
or right corner of the page.

References
CSS Specifications and References:
• W3C CSS2 Specification: http://www.w3.org/TR/REC-CSS2/
• W3C Schools CSS2 Reference http://www.w3schools.com/css/css_reference.asp
• W3Schools CSS Tutorial: http://www.w3schools.com/Css/default.asp
• EchoEcho.Com Tutorial: http://www.echoecho.com/css.htm
• CSS by Quirksmode: http://www.quirksmode.org/css/contents.html
• CSS Specificity Wars:

o http://www.stuffandnonsense.co.uk/archives/css_specificity_wars.html
• CSS Float Theory: Things You Should Know by Smashing Magazine:

o http://www.smashingmagazine.com/2007/05/01/css-float-theory-things-you-
should-know/

• CSS Positioning by Relatively Absolute
o http://www.autisticcuckoo.net/archive.php?id=2004/12/07/relatively-absolute

• CSS Positioning in 10 Steps
o http://www.barelyfitz.com/screencast/html-training/css/positioning/

• Web Design from Scratch: Block and Inline elements
o http://www.webdesignfromscratch.com/css-block-and-inline.cfm

• CSS Zen Garden: http://www.csszengarden.com/
• Most Useful 50 CSS Tips And Tools For Webmasters by Emma Alvarez

o http://www.emmaalvarez.com/2008/04/most-useful-50-css-tips-and-tools-
for.html

• Internet Explorer Layout Hacks and Fixes:
o http://www.tdrake.net/ie7-hacks/
o http://www.positioniseverything.net/ie-primer.html
o http://www.satzansatz.de/cssd/onhavinglayout.html

• Should I Use Tables for Layout?: http://shouldiusetablesforlayout.com/

136 Chapter 4 Page Layout

