A.1 Database Design and Definition 523

Table Columns (primary keys underlined, foreign keys in bold)

Countries name, code, surface_area, continent, gnp, population,
life_expectancy, government, head_of_state, capital

Cities id, name, region, population, country_code

CountrieslLanguages | country code, language, official, percentage

Table A.5 world database schema version 4 (tweaks)

Normalization

A common mistake many people make (including seasoned web developers) when creating a da-
tabase 1s putting too much information in one big table. For example, for the world database, why
not combine Countries and CountriesLanguages into a table like in Table A.6?

name code surface_area | continent | gnp population life_expectancy | government capital language | official percentage

Argentina ARG 2780400 South 340238 37032000 75.1 Federal 69 Spanish T 96.8
America Republic

Argentina ARG 2780400 South 340238 37032000 15.1 Federal 69 Italian F 1.7
America Republic

Argentina ARG 2780400 South 340238 37032000 15.1 Federal 69 Indian F 03
America Republic

Table A.6 CountrySpeak combined table (poor design)

The reason this 1s bad 1s that every country that speaks many languages (and most do), you will
be repeating the name, code, surface area, continent, GNP, population, lite expectancy, government,
head of state, and capital for the country for as many languages as the country speaks.

Repeating data 1s bad for two reasons. The tirst 1s quite obvious: space. The less you repeat the
less space you take in the database. Well, these days large hard drives are pretty cheap so for small or
mid-sized databases, maybe this 1sn't such a compelling argument.

A second reason repetition 1s bad that 1s slightly less obvious, but even more important: data con-
sistency. When you have repeated data in a table it 1s very easy to have mconsistencies when you mn-
sert, update, and delete data. For example, you could easily mistype mserting 3703200 as the popula-
tion for one ot the rows above. The ditterence between 37032000 and 3703200 1s huge. Now when
an Ayuda user wants to know the population of Argentina, which value should they trust (both seem
like viable populations for a country)? An update example: when Argentina elects a new president, an
Ayuda user could easily torget to update all rows, again leaving the database 1 an mconsistent state.
Lastly, a deletion example: Ayuda decides they no longer want to keep information about languages
spoken in Argentina and so they delete all rows. Unintentionally, they have deleted all information
about Argentina even though they meant only to delete information about languages spoken in Ar-
gentina. In a world where "Data 1s King", mconsistency 1s something to be avoided 1if at all possible.

How can we minimize data duplication and mconsistencies 1 our schema? The answer 1s a
technique called normalization. There are various levels of normalization and the higher the level the
higher the guarantee of consistency. We'll go through the first three levels of normalization as once
you get to the third level you are guaranteed to be free ot most update, insert, and deletion errors.

A table s at the first level of normalization, also called First Normal Form, it and only it there are
no repeated rows (each row has some unique information) and there are no multi-valued columns. It
1s not uncommon for those who don't have much experience with relational database to create a da-
tabase that stores mnformation like 1n Table A.7.

524 Appendix A Database Design

name code surface_area continent | gnp population life_expectancy | government | head_of state | capital | Languages
Argentina | ARG 2780400 South 340238 37032000 751 Federal Christina 69 Spanish (T, 96.8),
America Republic Fernandez Italian ~ (F, 1.7)
Indian Languages (F,
0.3)

Table A.7 Design for CountrySpeak that is not even in First Normal Form

Fields in tables are not meant to store lists. 'They are meant to store information about a single, discrete
ptece of information. Here are a tew of the downsides of storing lists 1n a multi-valued column:

® You mught not have anticipated enough space if the list grows too large.

® The basic INSERT, UPDATE, and DELETE statements are not sufficient to manipulate multi-
valued columns.

o Web programmers will have to do a lot of string parsing to get information that they need
from the list.

® Table name, primary key, and column name do not map to a specitic piece of data.

A table 1s at the second level of normalization, also called Second Normal Form, it and only 1t 1t
1s 1n First Normal form and the pumary key determunes all non-key column values. Table A.6 1s 1n
First Normal Form, but 1s not in Second Normal Form because the country code does not determine
the value for language, ofticial, or percentage. As discussed above, a table that 1s not 11 Second
Normal Form 1s subject to errors on mnsert, update, and delete.

A table 1s at the third level of normalization, also called Third Normal Form, if it 1s in Second
Normal Form and all columns are directly dependent on the primary key. A way to remember what
Third Normal Form means was given by Bill Kent: every non-key attubute "must provide a fact
about the key, the whole key, and nothing but the key so help me Codd" (Codd invented the theo-
retical basis for relational databases). All tables 1 the world database schema proposed in Table A5
1s 1 Third Normal Form as all non-key columns depend on the primary key.

An example of a table in Second Normal Form, but not in Third Normal Form would be 1f we
added the head of state's date of birth to the Countries table. This is because the date of birth of
the head of state relies on the person that 1s head of state, not on the country. The scenario where
this could result in a data inconsistency s if the same person happened to be head of state in two
countries at the same time (sounds nidiculous but could be viable 1t one country invades another),
there 1s nothing to stop the head of state to have two difterent dates of birth in the two rows. In or-
der to store this additional piece of information and stay in Third Normal Form, we would make a
HeadOfState table in which we would store the name and date of birth and then Countries would
link to this table through a toreign key. Table A.8 summarizes the three levels of normalization.

First Normal Form No duplicate rows and no multi-valued columns (1.e. columns of lists)

Second Normal Form | In First Normal Form and primary key determines all non-key columns

Third Normal Form In Second Normal Form and all columns are dependent on primary key

Table A.8 Three levels of normalization

Physical Design

At this stage of the database design process, you should have a good idea of what your tables,
columns, and keys will be and that the structure of the database 1s sate from data duplication and 1n-
consistencies. The last step in the design process 1s to tigure out how the database will physically be
configured for the hardware on which 1t runs. This includes choosing the data types of each table

