15.2 Cross-Site Scripting (XSS) 585

15.2 Cross-Site Scripting (XSS)

In this section we will examine one particular kind of security attack called cross-site scripting, or
XSS for short, that is perhaps the most commonly seen in all of web programming. In 2007, XSS
attacks accounted for over 80% of all web-based security attacks. Some XSS attacks are a mere nui-
sance, while others can lead to actual damage of data and other significant security problems.

Cross-site scripting is the act of inserting malicious code into a web page to be viewed by others.
XSS is a specific case of the concept of malicious code injection, the insertion of program code into an
unexpected or undesired place in an application.

Most XSS attacks involve submitting HTML or JavaScript code into a form on a web site and
causing that code to appear on the form's response page. The basic idea with a cross-site scripting
attack is that if you, the attacker, can insert arbitrary content into a page on the server, you can insert
anything from slanderous or embarrassing HTML content to malicious JavaScript code that executes
functionality the web site's developer did not intend.

15.2.1 A Typical XSS Attack

Most of the examples we've shown in this textbook involving HTML forms and PHP code have
been vulnerable to XSS attacks. Let's look at a particular example of a "Magic 8-Ball" page. The site is
a PHP page that shows a form asking the user to type a question. In response, the page shows a pic-
ture of a Magic 8-Ball toy that gives the user a yes/no answer to their question, similar to the popular
children's toy. The partial HTML soutce for the front page is shown in Example 15.1.

<h1>The Magic 8-Ball Page</hl>
<p>Type any yes/no question, and the magic 8-ball will answer it for you.</p>
<form action="8ball-answer.php" method="post">
Your question: <input type="text" name="question" size="60" />
<input type="submit" value="Ask the 8-ball" />
</form>

The Magic 8-Ball Page

Type any yes/no question, and the magic 8-ball will answer it for you.

Your question: [is my site secure? Ask the 8-ball |
Example 15.1 Magic 8-ball page with form

The front page submits its data to a PHP response page named 8ball-answer.php. The answer
page reads a file of one-line responses named sayings.txt where each line contains a single response
that the 8-ball might give, such as "It is decidedly so" or "Outlook not so good". The answer page
and a sample output from it are shown in Example 15.2.

586 Chapter 15 Web Security

<?php

$question = $_POST["question"];

$choices = file("sayings.txt");

$answer = $choices[rand(@, count($choices) - 1)]; # pick random answer
?>

<p>The answer to, <qg»><?= $question ?></g>, is:</p>
<div id="eightball"> <?= $answer ?> </div>

The answer to, "Is my site secure?", is:

Qutlook not so good

Example 15.2 Magic 8-ball form response page (not secure)

This simple site is actually not secure and is vulnerable to cross-site scripting attacks. The reason
it is vulnerable is that it grabs the query parameter, $_POST["question™], and directly inserts that
patametet's value into the response page. Example 15.3 demonstrates. The attacker types a string
containing HTML tags such as . The answer page displays the content as formatted HTML, with
an italic font and a green dotted border.

The Magic 8-Ball Page

Type any yes/no question, and the magic 8-ball will answer it for you.

Your question: |<em style="border-bottom: 3px dotted green:">UH-OHI</em: Ask the 8-ball |

The answer to, "UH-OH!, is:

Example 15.3 Injecting HTML content into 8-ball page

Injecting a few HTML tags for formatting is not very harmful. But there are many malicious
things the attacker can do if it's possible to inject arbitrary HTML content into the page. One simple
thing we could do is to inject something offensive or slanderous into the page, making it look like this
site supports such a statement. This is shown in Example 15.4. The example input inserts tags to pre-

15.2 Cross-Site Scripting (XSS) D587

maturely close the "The answer to" paragraph, then begin a new paragraph containing an embarrass-
ing false advertisement claiming that the site is written by terrorists (!), followed by a few final tags to
hide the previous ", is:" text from appearing on the page. The response page with its phony claims
about our web site is shown in the example. How annoying]!

hi</qg>, is:</p><p>(This site was written by evil terrorists!)</p>
<p style="display: none"><q>

Your question: |hi there</q>, is:</p><p>(This site was written by evil terro _Ask the 8-ball |

The answer to, "hi there", is:
(This site was written by evil terrorists!)

e T
Example 15.4 Injecting embarrassing HTML content into 8-ball page

Even worse than injecting embarrassing HTML content is to inject arbitrary JavaScript code. Our
next attack, the true XSS attack, is shown in Example 15.5. The attacker types in a <script> tag con-
taining some inline JavaScript code to be executed. When the answer page shows, the code is exe-
cuted and the script alert window appears.

Your questiun: |r:scripttype="text,fjavascript">aIert("pwned"};-:;script:a Ask the 8-ball |

Example 15.5 Injecting JavaScript code into 8-ball page (XSS attack)

It may not be immediately clear why it is damaging for the attacker to be able to run JavaScript
code like this. What's so bad about the attacker being able to pop up an alert box? The real prob-
lem is that JavaScript code executes with a certain amount of trust in a web browser. Users that visit
web sites have the expectation that any code running on the site is written by the site authors them-
selves and therefore can be trusted as much as we trust that particular author. If the attacker can run
arbitrary JavaScript code on your page, they can potentially insert commands that will run this code
when other users visit the site. The attacker could cause code to run that makes malicious bank trans-
fers from one account to another, or changes or discloses users' account data, or changes the page
dynamically to the attacker's whim. XSS attacks can also lead to theft of session data, which can allow
the attacker to perform identity theft and other damage. It is simply unacceptable to give attackers
this kind of ability to modify the content of your site.

588 Chapter 15 Web Security

15.2.2 Defending Against XSS

Function Description

htmlspecialchars Replaces certain characters with HTML character entities

htmlspecialchars_decode | Converts all HTML entities from encoded forms back into
plain text; opposite of htmlspecialchars

htmlentities Replaces a// characters that have an equivalent HTMIL. char-
acter entity with that entity

html_entity_decode Converts all HTML entities back to regular characters;
the opposite of htmlentities

Table 15.1 PHP functions for encoding and decoding HTML entities

The proper way to deal with most types of code injection, including cross-site scripting, goes
back to our discussion of the security mindset. We must not trust the input sent to us by the user. In
particular, we must never directly insert that input into our own pages without first processing it to
make sure that it is free of HTML or JavaScript or other malicious code.

Security Note q The ree}l problem in this case is _that.the user's input can contain
e characters like < or & that have meaning in HTML's syntax. We could
ever insert user . .

Ry B write code of our own to look for such characters and encode them into
an HTML page. safer character entity equivalents. But that isn't necessaty, because the
(It must be encoded first.) authors of PHP have already taken care of this for us. There are several

provided functions in PHP that accept a string as a parameter and return
a safely HTML-encoded version of that string. The most commonly used function is
htmlspecialchars. When you call this function and pass it a string, it returns a new string with
each potentially harmful character replaced by an equivalent HTML character entity reference. For
example, < is replaced by &1t; in the encoded string. This process of replacing HTML content with
character entities is also called HTMI -encoding a string. Example 15.6 shows a sample call.

$text = "<p> hi 2 u & me </p>";
$text = htmlspecialchars($text); # "<p> hi 2 u & me &1t;/p>"

Example 15.6 Using htmlspecialchars to encode text

Another function htmlentities is like htmlspecialchars but more aggressive. The
htmlentities function replaces every character that has an equivalent entity with that entity, even if
the character was not potentially harmful. For example, htmlentities replaces all apostrophe '
characters with '. But we don't need this extra level of encoding to protect against XSS attacks,
and it leads to larger and less readable strings, so we recommend using htmlspecialchars instead.

Example 15.7 shows our Magic 8-ball answer page modified to use htmlspecialchars. The
sample output shown demonstrates that now if the attacker tries to insert HTML or JavaScript con-
tent into the page, the tags are simply echoed (because they are encoded now with entities like &1t ;)
rather than actually being inserted as HTML or JavaScript code in the page. The page is now secure
against cross-site scripting attacks.

15.2 Cross-Site Scripting (XSS) 589

<?php

$question = $_POST["question"];

$choices = file("sayings.txt");

$answer = $choices[rand(@, count($choices) - 1)]; # pick random answer
?>

<p>The answer to,
<q><?= htmlspecialchars($question) ?></qg>, is:</p>
<div id="eightball"> <?= htmlspecialchars($answer) ?> </div>

The answer to, "<script type="text/javascript">alert("Did | pwn you?");</script>", is:

My reply is no

Example 15.7 Magic 8-ball form response page (secure)

Note that htmlspecialchars is not being called until the moment that the input values are in-
serted with PHP expression blocks (<?= .. ?>). This is a stylistic choice; you could call
htmlspecialchars as soon as you read the query parameters into variables, but that can be annoy-
ing if you want to analyze the parameter's value to look for some particular text or value. If you're
going to insert the value into the page many times, it may be better to encode it early so that you
won't forget to do so later.

Another interesting note about this code is that we also call htmlspecialchars on the line of
text being inserted from our input file, savings.txt. This may seem unnecessary; the attacker doesn't
have access to that file, so why encode the text that comes out of the file? It's mostly defensive pro-
gramming. Who knows if there is some vulnerability somewhere else in our site or server that allows
the attacker to gain access to that file and modify its contents? If so, the attacker could put lines into
that file that contain malicious HTML or JavaScript code. Or even if no attacker is involved, the pet-
son who manages the sayings file might innocently insert a saying with a special character in it such as
< or &, not knowing that these characters have special meanings in HTML. By being safe and encod-
ing the line from the file that we inject into the page, we reduce the risk that the file's contents could
lead to a code injection attack on this page. Better safe than sorry.

Self-Check

7. What mistake in a web site's code leads to it being vulnerable to XSS attacks?

8. What kinds of content can an attacker insert into a page in an XSS attack, and what sort of
damage can result from inserting such content?

9. What changes are made to a string when it is HTML-encoded? Why do these specific
changes make the string safer to use in an HTML page?

10. Why might you want to HTML-encode a piece of data that did not come from user input?

